Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Immunol ; 13: 975676, 2022.
Article in English | MEDLINE | ID: mdl-36110842

ABSTRACT

Novel therapeutics against the global threat of multidrug-resistant Neisseria gonorrhoeae are urgently needed. Gonococci evade killing by complement by binding factor H (FH), a key inhibitor of the alternative pathway. FH comprises 20 short consensus repeat (SCR) domains organized as a single chain. Gonococci bind FH through domains 6 and 7, and C-terminal domains 18 through 20. Previously, we showed that a chimeric protein comprising (from the N- to C-terminus) FH domains 18-20 (containing a point mutation in domain 19 to prevent lysis of host cells) fused to human IgG1 Fc (called FH*/Fc1) killed gonococci in a complement-dependent manner and reduced the duration and bacterial burden in the mouse vaginal colonization model of gonorrhea. Considering the N. gonorrhoeae-binding FH domains 18-20 are C-terminal in native FH, we reasoned that positioning Fc N-terminal to FH* (Fc1/FH*) would improve binding and bactericidal activity. Although both molecules bound gonococci similarly, Fc1/FH* displayed a 5-fold lower IC50 (the concentration required for 50% killing in complement-dependent bactericidal assays) than FH*/Fc1. To further increase complement activation, we replaced human IgG1 Fc in Fc1/FH* with Fc from human IgG3, the most potent complement-activating IgG subclass, to obtain Fc3/FH*. Bactericidal activity was further increased ~2.3-fold in Fc3/FH* compared to Fc1/FH*. Fc3/FH* killed (defined by <50% survival) 45/45 (100%) diverse PorB1B-expessing gonococci, but only 2/15 PorB1A-expressing isolates, in a complement-dependent manner. Decreased Fc3/FH* binding accounted for the limited activity against PorB1A strains. Fc3/FH* was efficacious against all four tested PorB1B gonococcal strains in the mouse vaginal colonization model when administered at a dose of 5 µg intravaginally, daily. Furthermore, Fc3/FH* retained bactericidal activity when reconstituted following lyophilization or spray-drying, suggesting feasibility for formulation into intravaginal rings. In conclusion, Fc3/FH* represents a promising prophylactic immunotherapeutic against multidrug-resistant gonococci.


Subject(s)
Gonorrhea , Neisseria gonorrhoeae , Animals , Complement Factor H/metabolism , Complement System Proteins/metabolism , Disease Models, Animal , Female , Gonorrhea/drug therapy , Humans , Immunoglobulin G/metabolism , Mice , Neisseria gonorrhoeae/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/pharmacology
2.
J Infect Dis ; 225(10): 1861-1864, 2022 05 16.
Article in English | MEDLINE | ID: mdl-34971376

ABSTRACT

A safe and effective vaccine against multidrug-resistant gonorrhea is urgently needed. An experimental peptide vaccine called TMCP2 that mimics an oligosaccharide epitope in gonococcal lipooligosaccharide, when adjuvanted with glucopyranosyl lipid adjuvant-stable emulsion, elicits bactericidal immunoglobulin G and hastens clearance of gonococci in the mouse vaginal colonization model. In this study, we show that efficacy of TMCP2 requires an intact terminal complement pathway, evidenced by loss of activity in C9-/- mice or when C7 function was blocked. In conclusion, TMCP2 vaccine efficacy in the mouse vagina requires membrane attack complex. Serum bactericidal activity may serve as a correlate of protection for TMCP2.


Subject(s)
Gonorrhea , Neisseria gonorrhoeae , Animals , Bacterial Vaccines , Complement System Proteins , Disease Models, Animal , Female , Gonorrhea/prevention & control , Lipopolysaccharides , Mice
3.
mBio ; 12(2)2021 03 16.
Article in English | MEDLINE | ID: mdl-33727348

ABSTRACT

Monoclonal antibody (MAb) 2C7 recognizes a lipooligosaccharide epitope expressed by most clinical Neisseria gonorrhoeae isolates and mediates complement-dependent bactericidal activity. We recently showed that a recombinant human IgG1 chimeric variant of MAb 2C7 containing an E430G Fc modification (2C7_E430G), which enhances complement activation, outperformed the parental MAb 2C7 (2C7_WT) in vivo Because natural infection with N. gonorrhoeae often does not elicit protective immunity and reinfections are common, approaches that prolong bacterial control in vivo are of great interest. Advances in DNA-based approaches have demonstrated the combined benefit of genetic engineering, formulation optimizations, and facilitated delivery via CELLECTRA-EP technology, which can induce robust in vivo expression of protective DNA-encoded monoclonal antibodies (DMAbs) with durable serum activity relative to traditional recombinant MAb therapies. Here, we created optimized 2C7-derived DMAbs encoding the parental Fc (2C7_WT) or complement-enhancing Fc variants (2C7_E430G and 2C7_E345K). 2C7 DMAbs were rapidly generated and detected throughout the 4-month study. While all complement-engaging 2C7 variants facilitated rapid clearance following primary N. gonorrhoeae challenge (day 8 after DMAb administration), the complement-enhancing 2C7_E430G variant demonstrated significantly higher potency against mice rechallenged 65 days after DMAb administration. Passive intravenous transfer of in vivo-produced, purified 2C7 DMAbs confirmed the increased potency of the complement-enhancing variants. This study highlights the ability of the DMAb platform to launch the in vivo production of antibodies engineered to promote and optimize downstream innate effector mechanisms such as complement-mediated killing, leading to hastened bacterial elimination.IMPORTANCENeisseria gonorrhoeae has become resistant to most antibiotics in clinical use. Currently, there is no safe and effective vaccine against gonorrhea. Measures to prevent the spread of gonorrhea are a global health priority. A monoclonal antibody (MAb) called 2C7, directed against a lipooligosaccharide glycan epitope expressed by most clinical isolates, displays complement-dependent bactericidal activity and hastens clearance of gonococcal vaginal colonization in mice. Fc mutations in a human IgG1 chimeric version of MAb 2C7 further enhance complement activation, and the resulting MAb displays greater activity than wild-type MAb 2C7 in vivo Here, we utilized a DNA-encoded MAb (DMAb) construct designed to launch production and assembly of "complement-enhanced" chimeric MAb 2C7 in vivo The ensuing rapid and sustained MAb 2C7 expression attenuated gonococcal colonization in mice at 8 days as well as 65 days postadministration. The DMAb system may provide an effective, economical platform to deliver MAbs for durable protection against gonorrhea.


Subject(s)
Antibodies, Bacterial/administration & dosage , Antibodies, Monoclonal/administration & dosage , Bacterial Vaccines/immunology , Epitopes/immunology , Gonorrhea/prevention & control , Immunization, Passive , Immunoglobulin G/administration & dosage , Neisseria gonorrhoeae/immunology , Animals , Antibodies, Bacterial/genetics , Antibodies, Bacterial/immunology , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antigens, Bacterial/immunology , Bacterial Vaccines/administration & dosage , Complement Activation , Female , Gonorrhea/immunology , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Mice , Mice, Inbred BALB C
4.
J Infect Dis ; 222(10): 1641-1650, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32692363

ABSTRACT

Novel therapies to counteract multidrug-resistant gonorrhea are urgently needed. A unique gonococcal immune evasion strategy involves capping of lipooligosaccharide (LOS) with sialic acid by gonococcal sialyltransferase (Lst), utilizing host-derived CMP-sialic acid (CMP-Neu5Ac in humans). LOS sialylation renders gonococci resistant to complement and cationic peptides, and down-regulates the inflammatory response by engaging siglecs. CMP-sialic acid analogs (CMP-nonulosonates [CMP-NulOs]) such as CMP-Leg5,7Ac2 and CMP-Kdn are also utilized by Lst. Incorporation of these NulO analogs into LOS maintains gonococci susceptible to complement. Intravaginal administration of CMP-Kdn or CMP-Leg5,7Ac2 attenuates gonococcal colonization of mouse vaginas. Here, we identify a key mechanism of action for the efficacy of CMP-NulOs. Surprisingly, CMP-NulOs remained effective in complement C1q-/- and C3-/- mice. LOS Neu5Ac, but not Leg5,7Ac2 or Kdn, conferred resistance to the cathelicidins LL-37 (human) and mouse cathelicidin-related antimicrobial peptide in vitro. CMP-NulOs were ineffective in Camp-/- mice, revealing that cathelicidins largely mediate the efficacy of therapeutic CMP-NulOs.


Subject(s)
Cathelicidins/pharmacology , Cytidine Monophosphate/analogs & derivatives , Cytidine Monophosphate/metabolism , Cytidine Monophosphate/pharmacology , Gonorrhea/drug therapy , N-Acetylneuraminic Acid/metabolism , Animals , Antimicrobial Cationic Peptides/pharmacology , Complement System Proteins , Cytidine Monophosphate/genetics , Female , Lipopolysaccharides , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/metabolism , Neuraminic Acids , Sialic Acids , Sialyltransferases/metabolism
5.
mBio ; 10(6)2019 11 05.
Article in English | MEDLINE | ID: mdl-31690678

ABSTRACT

The global spread of multidrug-resistant strains of Neisseria gonorrhoeae constitutes a public health emergency. With limited antibiotic treatment options, there is an urgent need for development of a safe and effective vaccine against gonorrhea. Previously, we constructed a prototype vaccine candidate comprising a peptide mimic (mimitope) of a glycan epitope on gonococcal lipooligosaccharide (LOS), recognized by monoclonal antibody 2C7. The 2C7 epitope is (i) broadly expressed as a gonococcal antigenic target in human infection, (ii) a critical requirement for gonococcal colonization in the experimental setting, and (iii) a virulence determinant that is maintained and expressed by gonococci. Here, we have synthesized to >95% purity through a relatively facile and economical process a tetrapeptide derivative of the mimitope that was cyclized through a nonreducible thioether bond, thereby rendering the compound homogeneous and stable. This vaccine candidate, called TMCP2, when administered at 0, 3, and 6 weeks to BALB/c mice at either 50, 100 or 200 µg/dose in combination with glucopyranosyl lipid A-stable oil-in-water nanoemulsion (GLA-SE; a Toll-like receptor 4 and TH1-promoting adjuvant), elicited bactericidal IgG and reduced colonization levels of gonococci in experimentally infected mice while accelerating clearance by each of two different gonococcal strains. Similarly, a 3-dose biweekly schedule (50 µg TMCP2/dose) was also effective in mice. We have developed a gonococcal vaccine candidate that can be scaled up and produced economically to a high degree of purity. The candidate elicits bactericidal antibodies and is efficacious in a preclinical experimental infection model.IMPORTANCENeisseria gonorrhoeae has become resistant to most antibiotics. The incidence of gonorrhea is also sharply increasing. A safe and effective antigonococcal vaccine is urgently needed. Lipooligosaccharide (LOS), the most abundant outer membrane molecule, is indispensable for gonococcal pathogenesis. A glycan epitope on LOS that is recognized by monoclonal antibody (MAb) 2C7 (called the 2C7 epitope) is expressed almost universally by gonococci in vivo Previously, we identified a peptide mimic (mimitope) of the 2C7 epitope, which when configured as an octamer and used as an immunogen, attenuated colonization of mice by gonococci. Here, a homogenous, stable tetrameric derivative of the mimitope, when combined with a TH1-promoting adjuvant and used as an immunogen, also effectively attenuates gonococcal colonization of mice. This candidate peptide vaccine can be produced economically, an important consideration for gonorrhea, which affects socioeconomically underprivileged populations disproportionately, and represents an important advance in the development of a gonorrhea vaccine.


Subject(s)
Bacterial Vaccines/immunology , Lipopolysaccharides/immunology , Neisseria gonorrhoeae/immunology , Peptides/immunology , Animals , Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Antigens, Bacterial/immunology , Epitopes/immunology , Female , Gonorrhea/immunology , Immunoglobulin G/immunology , Mice , Mice, Inbred BALB C
6.
PLoS Biol ; 17(6): e3000323, 2019 06.
Article in English | MEDLINE | ID: mdl-31216278

ABSTRACT

Multidrug-resistant Neisseria gonorrhoeae is a global health problem. Monoclonal antibody (mAb) 2C7 recognizes a gonococcal lipooligosaccharide epitope that is expressed by >95% of clinical isolates and hastens gonococcal vaginal clearance in mice. Chimeric mAb 2C7 (human immunoglobulin G1 [IgG1]) with an E430G Fc modification that enhances Fc:Fc interactions and hexamerization following surface-target binding and increases complement activation (HexaBody technology) showed significantly greater C1q engagement and C4 and C3 deposition compared to mAb 2C7 with wild-type Fc. Greater complement activation by 2C7-E430G Fc translated to increased bactericidal activity in vitro and, consequently, enhanced efficacy in mice, compared with "Fc-unmodified" chimeric 2C7. Gonococci bind the complement inhibitors factor H (FH) and C4b-binding protein (C4BP) in a human-specific manner, which dampens antibody (Ab)-mediated complement-dependent killing. The variant 2C7-E430G Fc overcame the barrier posed by these inhibitors in human FH/C4BP transgenic mice, for which a single 1 µg intravenous dose cleared established infection. Chlamydia frequently coexists with and exacerbates gonorrhea; 2C7-E430G Fc also proved effective against gonorrhea in gonorrhea/chlamydia-coinfected mice. Complement activation alone was necessary and sufficient for 2C7 function, evidenced by the fact that (1) "complement-inactive" Fc modifications that engaged Fc gamma receptor (FcγR) rendered 2C7 ineffective, nonetheless; (2) 2C7 was nonfunctional in C1q-/- mice, when C5 function was blocked, or in C9-/- mice; and (3) 2C7 remained effective in neutrophil-depleted mice and in mice treated with PMX205, a C5a receptor (C5aR1) inhibitor. We highlight the importance of complement activation for antigonococcal Ab function in the genital tract. Elucidating the correlates of protection against gonorrhea will inform the development of Ab-based gonococcal vaccines and immunotherapeutics.


Subject(s)
Complement Activation/immunology , Gonorrhea/immunology , Neisseria gonorrhoeae/immunology , Animals , Antibodies, Bacterial/immunology , Antibodies, Monoclonal/metabolism , Antigens, Bacterial , Complement C4b-Binding Protein/immunology , Complement Factor H/immunology , Complement System Proteins/immunology , Complement System Proteins/metabolism , Epitopes/immunology , Female , Healthy Volunteers , Humans , Immunoglobulin G/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Neisseria gonorrhoeae/pathogenicity
7.
Cell Microbiol ; 21(2): e12998, 2019 02.
Article in English | MEDLINE | ID: mdl-30571845

ABSTRACT

Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne disease in the United States and Europe. The spirochetes are transmitted from mammalian and avian reservoir hosts to humans via ticks. Following tick bites, spirochetes colonize the host skin and then disseminate haematogenously to various organs, a process that requires this pathogen to evade host complement, an innate immune defence system. CspZ, a spirochete surface protein, facilitates resistance to complement-mediated killing in vitro by binding to the complement regulator, factor H (FH). Low expression levels of CspZ in spirochetes cultivated in vitro or during initiation of infection in vivo have been a major hurdle in delineating the role of this protein in pathogenesis. Here, we show that treatment of B. burgdorferi with human blood induces CspZ production and enhances resistance to complement. By contrast, a cspZ-deficient mutant and a strain that expressed an FH-nonbinding CspZ variant were impaired in their ability to cause bacteraemia and colonize tissues of mice or quail; virulence of these mutants was however restored in complement C3-deficient mice. These novel findings suggest that FH binding to CspZ facilitates B. burgdorferi complement evasion in vivo and promotes systemic infection in vertebrate hosts.


Subject(s)
Bacterial Proteins/metabolism , Borrelia burgdorferi/immunology , Complement C3/immunology , Lyme Disease/immunology , Membrane Proteins/metabolism , Animals , Bacterial Proteins/genetics , Borrelia burgdorferi/pathogenicity , Complement C3/genetics , Complement Factor H/immunology , Complement Factor H/metabolism , Coturnix , Humans , Ixodes/microbiology , Membrane Proteins/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout
8.
Anesthesiology ; 129(3): 608, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29757768
9.
PLoS Pathog ; 14(5): e1007106, 2018 05.
Article in English | MEDLINE | ID: mdl-29813137

ABSTRACT

Borrelia burgdorferi sensu lato (Bbsl), the causative agent of Lyme disease, establishes an initial infection in the host's skin following a tick bite, and then disseminates to distant organs, leading to multisystem manifestations. Tick-to-vertebrate host transmission requires that Bbsl survives during blood feeding. Complement is an important innate host defense in blood and interstitial fluid. Bbsl produces a polymorphic surface protein, CspA, that binds to a complement regulator, Factor H (FH) to block complement activation in vitro. However, the role that CspA plays in the Bbsl enzootic cycle remains unclear. In this study, we demonstrated that different CspA variants promote spirochete binding to FH to inactivate complement and promote serum resistance in a host-specific manner. Utilizing a tick-to-mouse transmission model, we observed that a cspA-knockout B. burgdorferi is eliminated from nymphal ticks in the first 24 hours of feeding and is unable to be transmitted to naïve mice. Conversely, ectopically producing CspA derived from B. burgdorferi or B. afzelii, but not B. garinii in a cspA-knockout strain restored spirochete survival in fed nymphs and tick-to-mouse transmission. Furthermore, a CspA point mutant, CspA-L246D that was defective in FH-binding, failed to survive in fed nymphs and at the inoculation site or bloodstream in mice. We also allowed those spirochete-infected nymphs to feed on C3-/- mice that lacked functional complement. The cspA-knockout B. burgdorferi or this mutant strain complemented with cspA variants or cspA-L246D was found at similar levels as wild type B. burgdorferi in the fed nymphs and mouse tissues. These novel findings suggest that the FH-binding activity of CspA protects spirochetes from complement-mediated killing in fed nymphal ticks, which ultimately allows Bbsl transmission to mammalian hosts.


Subject(s)
Arachnid Vectors/microbiology , Bacterial Proteins/metabolism , Borrelia burgdorferi Group/physiology , Complement Factor H/metabolism , Ixodes/microbiology , Lyme Disease/transmission , Animals , Bacterial Proteins/genetics , Borrelia burgdorferi Group/immunology , Complement Factor H/genetics , Complement System Proteins/metabolism , Coturnix , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Flagellin/genetics , Flagellin/metabolism , Flow Cytometry , Horses , Humans , Lyme Disease/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Nymph/microbiology , Polymorphism, Genetic , Species Specificity , Surface Plasmon Resonance
10.
Healthc Financ Manage ; 66(4): 82-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22523892

ABSTRACT

By improving its patient flow, Intermountain Healthcare was able to increase capacity and improve resource utilization. The project's guiding principle was to remove variation from patient flow processes, increase collaboration, and enhance the quality of care. A pilot project to redesign patient flow at Intermountain Medical Center focused on patient placement and care coordination. The pilot resulted in the creation of 21 virtual beds, reduced severity-adjusted average length of stay, enhanced patient satisfaction, and improved bed turn-around time.


Subject(s)
Efficiency, Organizational , Hospitals, General/organization & administration , Patient Care Management/organization & administration , Quality Assurance, Health Care , Organizational Case Studies , Utah
11.
Commun Nurs Res ; 40: 27, 29-53, 2007.
Article in English | MEDLINE | ID: mdl-17900066

ABSTRACT

The practice of nursing continues in a state of change, with a number of issues challenging us as we strive for excellence. Nursing leaders must confront these on a daily basis and are passionate about and committed to continually strengthening nursing practice for the delivery of excellent patient care. The nursing workforce issues, nursing leadership challenges, focus on quality, safety and evidence based practice, decreasing health disparities and creating patient partnerships all must be addressed for us to succeed. Through exploring the interconnections of these issues, we can make a significant change in one to affect other areas. Challenges bring opportunities and we are seeing our hard work begin to make significant improvements. The work force is stabilizing, we are experimenting with ways to get staff excited about becoming nurse leaders, focusing on improving care through quality and safety initiatives, moving toward evidence based practice and achieving partnerships with patients other healthcare providers and our communities.


Subject(s)
Nursing/organization & administration , Patient-Centered Care/organization & administration , Quality of Health Care/organization & administration , Safety Management/organization & administration , Evidence-Based Medicine/education , Evidence-Based Medicine/organization & administration , Forecasting , Health Status , Humans , Leadership , Nurse Administrators/education , Nurse Administrators/organization & administration , Nursing Education Research , Organizational Innovation , Philosophy, Nursing , Professional Autonomy , Professional Competence , Total Quality Management/organization & administration
SELECTION OF CITATIONS
SEARCH DETAIL
...