Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (194)2023 04 21.
Article in English | MEDLINE | ID: mdl-37154564

ABSTRACT

The compact morphology of isolated and cultured inner ear ganglion neurons allows for detailed characterizations of the ion channels and neurotransmitter receptors that contribute to cell diversity across this population. This protocol outlines the steps necessary for successful dissecting, dissociating, and short-term culturing of the somata of inner ear bipolar neurons for the purpose of patch-clamp recordings. Detailed instructions for preparing vestibular ganglion neurons are provided with the necessary modifications needed for plating spiral ganglion neurons. The protocol includes instructions for performing whole-cell patch-clamp recordings in the perforated-patch configuration. Example results characterizing the voltage-clamp recordings of hyperpolarization-activated cyclic nucleotide-gated (HCN)-mediated currents highlight the stability of perforated-patch recording configuration in comparison to the more standard ruptured-patch configuration. The combination of these methods, isolated somata plus perforated-patch-clamp recordings, can be used to study cellular processes that require long, stable recordings and the preservation of intracellular milieu, such as signaling through G-protein coupled receptors.


Subject(s)
Rodentia , Spiral Ganglion , Animals , Membrane Potentials/physiology , Neurons/physiology , Ion Channels
2.
eNeuro ; 8(6)2021.
Article in English | MEDLINE | ID: mdl-34607806

ABSTRACT

Auditory stimuli travel from the cochlea to the brainstem through type I and type II cochlear afferents. While type I afferents convey information about the frequency, intensity, and timing of sounds, the role of type II afferents remains unresolved. Limited recordings of type II afferents from cochlear apex of prehearing rats reveal they are activated by widespread outer hair cell stimulation, ATP, and by the rupture of nearby outer hair cells. Altogether, these lines of evidence suggest that type II afferents sense loud, potentially damaging levels of sound. To explore this hypothesis further, calcium imaging was used to determine the impact of acoustic trauma on the activity of type II cochlear afferents of young adult mice of both sexes. Two known marker genes (Th, Drd2) and one new marker gene (Tac1), expressed in type II afferents and some other cochlear cell types, drove GCaMP6f expression to reveal calcium transients in response to focal damage in the organ of Corti in all turns of the cochlea. Mature type II afferents responded to acute photoablation damage less often but at greater length compared with prehearing neurons. In addition, days after acoustic trauma, acute photoablation triggered a novel response pattern in type II afferents and surrounding epithelial cells, delayed bursts of activity occurring minutes after the initial response subsided. Overall, calcium imaging can report type II afferent responses to damage even in mature and noise-exposed animals and reveals previously unknown tissue hyperactivity subsequent to acoustic trauma.


Subject(s)
Hearing Loss, Noise-Induced , Acoustic Stimulation , Animals , Cochlea , Female , Hair Cells, Auditory, Outer , Male , Mice , Neurons , Noise , Rats
3.
J Assoc Res Otolaryngol ; 22(1): 19-31, 2021 02.
Article in English | MEDLINE | ID: mdl-33151428

ABSTRACT

Outer hair cells (OHCs) in the mouse cochlea are contacted by up to three type II afferent boutons. On average, only half of these are postsynaptic to presynaptic ribbons. Mice of both sexes were subjected to acoustic trauma that produced a threshold shift of 44.2 ± 9.1 dB 7 days after exposure. Ribbon synapses of OHCs were quantified in post-trauma and littermate controls using immunolabeling of CtBP2. Visualization with virtual reality was used to determine 3-D cytoplasmic localization of CtBP2 puncta to the synaptic pole of OHCs. Acoustic trauma was associated with a statistically significant increase in the number of synaptic ribbons per OHC. Serial section TEM was carried out on similarly treated mice. This also showed a significant increase in the number of ribbons in post-trauma OHCs, as well as a significant increase in ribbon volume compared to ribbons in control OHCs. An increase in OHC ribbon synapses after acoustic trauma is a novel observation that has implications for OHC:type II afferent signaling. A mathematical model showed that the observed increase in OHC ribbons considered alone could produce a significant increase in action potentials among type II afferent neurons during strong acoustic stimulation.


Subject(s)
Acoustic Stimulation/adverse effects , Hair Cells, Auditory, Outer/physiology , Hair Cells, Vestibular , Hearing Loss, Noise-Induced , Synapses/physiology , Animals , Auditory Threshold/physiology , Mice , Presynaptic Terminals
4.
J Neurosci ; 38(25): 5677-5687, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29789373

ABSTRACT

Until postnatal day (P) 12, inner hair cells of the rat cochlea are invested with both afferent and efferent synaptic connections. With the onset of hearing at P12, the efferent synapses disappear, and afferent (ribbon) synapses operate with greater efficiency. This change coincides with increased expression of voltage-gated potassium channels, the loss of calcium-dependent electrogenesis, and the onset of graded receptor potentials driven by sound. The transient efferent synapses include near-membrane postsynaptic cisterns thought to regulate calcium influx through the hair cell's α9-containing and α10-containing nicotinic acetylcholine receptors. This influx activates small-conductance Ca2+-activated K+ (SK) channels. Serial-section electron microscopy of inner hair cells from two 9-d-old (male) rat pups revealed many postsynaptic efferent cisterns and presynaptic afferent ribbons whose average minimal separation in five cells ranged from 1.1 to 1.7 µm. Efferent synaptic function was studied in rat pups (age, 7-9 d) of either sex. The duration of these SK channel-mediated IPSCs was increased by enhanced calcium influx through L-type voltage-gated channels, combined with ryanodine-sensitive release from internal stores-presumably the near-membrane postsynaptic cistern. These data support the possibility that inner hair cell calcium electrogenesis modulates the efficacy of efferent inhibition during the maturation of inner hair cell synapses.SIGNIFICANCE STATEMENT Strict calcium buffering is essential for cellular function. This problem is especially acute for compact hair cells where increasing cytoplasmic calcium promotes the opposing functions of closely adjoining afferent and efferent synapses. The near-membrane postsynaptic cistern at efferent synapses segregates synaptic calcium signals by acting as a dynamic calcium store. The hair cell serves as an informative model for synapses with postsynaptic cisterns (C synapses) found in central neurons.


Subject(s)
Calcium Signaling/physiology , Cochlea/innervation , Hair Cells, Auditory, Inner/cytology , Hair Cells, Auditory, Inner/physiology , Synapses/physiology , Animals , Animals, Newborn , Calcium Channels, L-Type/metabolism , Cochlea/cytology , Cochlea/growth & development , Female , Inhibitory Postsynaptic Potentials/physiology , Male , Rats , Small-Conductance Calcium-Activated Potassium Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...