Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(8)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917881

ABSTRACT

Laser thermal forming is an application of laser heating without any intentional use of external forces. Force-assisted laser bending and laser-assisted bending are hybrid techniques, which combine the use of external forces and local heating to increase the effectiveness of forming. A quantitative description of bending deformation induced by concurrent laser heating and mechanical loading is proposed in this study. Mechanical loading is expressed by the bending moment while the curvature is used to describe the resulting deformation. The contribution of a relatively less known mechanism of laser thermal bending in the hybrid process is identified. The mechanism is able to produce the so-called convex deformation, i.e., bending away from the incident laser beam. Experimental and numerical analysis is performed with thin-walled beams made of Inconel 718 nickel-based superalloy in the factory-annealed state. The Johnson-Cook constitutive material model is used in numerical simulations validated by experimental results.

2.
Planta ; 245(4): 835-848, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28064363

ABSTRACT

MAIN CONCLUSION: The order of the internodes, and their geometry and mechanical characteristics influence the capability of the Equisetum stem to vibrate, potentially stimulating spore liberation at the optimum stress setting along the stem. Equisetum hyemale L. plants represent a special example of cellular solid construction with mechanical stability achieved by a high second moment of area and relatively high resistance against local buckling. We proposed the hypothesis that the order of E. hyemale L. stem internodes, their geometry and mechanical characteristics influence the capability of the stem to vibrate, stimulating spore liberation at the minimum stress setting value along the stem. An analysis of apex vibration was done based on videos presenting the behavior of an Equisetum clump filmed in a wind tunnel and also as a result of excitation by bending the stem by 20°. We compared these data with the vibrations of stems of the same size but deprived of the three topmost internodes. Also, we created a finite element model (FEM), upon which we have based the 'natural' stem vibration as a copy of the real object, 'random' with reshuffled internodes and 'uniform', created as one tube with the characters averaged from all internodes. The natural internode arrangement influences the frequency and amplitude of the apex vibration, maintaining an equal stress distribution in the stem, which may influence the capability for efficient spore spreading.


Subject(s)
Equisetum/physiology , Plant Stems/physiology , Biomechanical Phenomena/physiology , Equisetum/anatomy & histology , Plant Stems/anatomy & histology , Spores/physiology , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...