Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Vasc Surg ; 80(1): 251-259.e3, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38417709

ABSTRACT

OBJECTIVE: Patients with diabetes mellitus (DM) are at increased risk for peripheral artery disease (PAD) and its complications. Arterial calcification and non-compressibility may limit test interpretation in this population. Developing tools capable of identifying PAD and predicting major adverse cardiac event (MACE) and limb event (MALE) outcomes among patients with DM would be clinically useful. Deep neural network analysis of resting Doppler arterial waveforms was used to detect PAD among patients with DM and to identify those at greatest risk for major adverse outcome events. METHODS: Consecutive patients with DM undergoing lower limb arterial testing (April 1, 2015-December 30, 2020) were randomly allocated to training, validation, and testing subsets (60%, 20%, and 20%). Deep neural networks were trained on resting posterior tibial arterial Doppler waveforms to predict all-cause mortality, MACE, and MALE at 5 years using quartiles based on the distribution of the prediction score. RESULTS: Among 11,384 total patients, 4211 patients with DM met study criteria (mean age, 68.6 ± 11.9 years; 32.0% female). After allocating the training and validation subsets, the final test subset included 856 patients. During follow-up, there were 262 deaths, 319 MACE, and 99 MALE. Patients in the upper quartile of prediction based on deep neural network analysis of the posterior tibial artery waveform provided independent prediction of death (hazard ratio [HR], 3.58; 95% confidence interval [CI], 2.31-5.56), MACE (HR, 2.06; 95% CI, 1.49-2.91), and MALE (HR, 13.50; 95% CI, 5.83-31.27). CONCLUSIONS: An artificial intelligence enabled analysis of a resting Doppler arterial waveform permits identification of major adverse outcomes including all-cause mortality, MACE, and MALE among patients with DM.


Subject(s)
Peripheral Arterial Disease , Predictive Value of Tests , Ultrasonography, Doppler , Humans , Male , Female , Aged , Peripheral Arterial Disease/physiopathology , Peripheral Arterial Disease/diagnostic imaging , Peripheral Arterial Disease/mortality , Peripheral Arterial Disease/complications , Risk Assessment , Middle Aged , Risk Factors , Deep Learning , Reproducibility of Results , Prognosis , Aged, 80 and over , Time Factors , Tibial Arteries/diagnostic imaging , Tibial Arteries/physiopathology , Diabetic Angiopathies/physiopathology , Diabetic Angiopathies/diagnostic imaging , Diabetic Angiopathies/mortality , Diabetic Angiopathies/diagnosis
2.
J Am Heart Assoc ; 13(3): e031880, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38240202

ABSTRACT

BACKGROUND: Patients with peripheral artery disease are at increased risk for major adverse cardiac events, major adverse limb events, and all-cause death. Developing tools capable of identifying those patients with peripheral artery disease at greatest risk for major adverse events is the first step for outcome prevention. This study aimed to determine whether computer-assisted analysis of a resting Doppler waveform using deep neural networks can accurately identify patients with peripheral artery disease at greatest risk for adverse outcome events. METHODS AND RESULTS: Consecutive patients (April 1, 2015, to December 31, 2020) undergoing ankle-brachial index testing were included. Patients were randomly allocated to training, validation, and testing subsets (60%/20%/20%). Deep neural networks were trained on resting posterior tibial arterial Doppler waveforms to predict major adverse cardiac events, major adverse limb events, and all-cause death at 5 years. Patients were then analyzed in groups based on the quartiles of each prediction score in the training set. Among 11 384 total patients, 10 437 patients met study inclusion criteria (mean age, 65.8±14.8 years; 40.6% women). The test subset included 2084 patients. During 5 years of follow-up, there were 447 deaths, 585 major adverse cardiac events, and 161 MALE events. After adjusting for age, sex, and Charlson comorbidity index, deep neural network analysis of the posterior tibial artery waveform provided independent prediction of death (hazard ratio [HR], 2.44 [95% CI, 1.78-3.34]), major adverse cardiac events (HR, 1.97 [95% CI, 1.49-2.61]), and major adverse limb events (HR, 11.03 [95% CI, 5.43-22.39]) at 5 years. CONCLUSIONS: An artificial intelligence-enabled analysis of Doppler arterial waveforms enables identification of major adverse outcomes among patients with peripheral artery disease, which may promote early adoption and adherence of risk factor modification.


Subject(s)
Artificial Intelligence , Peripheral Arterial Disease , Humans , Female , Middle Aged , Aged , Aged, 80 and over , Male , Peripheral Arterial Disease/diagnostic imaging , Risk Factors
3.
Vasc Med ; 27(4): 333-342, 2022 08.
Article in English | MEDLINE | ID: mdl-35535982

ABSTRACT

BACKGROUND: Patients with peripheral artery disease (PAD) are at increased risk for major adverse limb and cardiac events including mortality. Developing screening tools capable of accurate PAD identification is a necessary first step for strategies of adverse outcome prevention. This study aimed to determine whether machine analysis of a resting Doppler waveform using deep neural networks can accurately identify patients with PAD. METHODS: Consecutive patients (4/8/2015 - 12/31/2020) undergoing rest and postexercise ankle-brachial index (ABI) testing were included. Patients were randomly allocated to training, validation, and testing subsets (70%/15%/15%). Deep neural networks were trained on resting posterior tibial arterial Doppler waveforms to predict normal (> 0.9) or PAD (⩽ 0.9) using rest and postexercise ABI. A separate dataset of 151 patients who underwent testing during a period after the model had been created and validated (1/1/2021 - 3/31/2021) was used for secondary validation. Area under the receiver operating characteristic curves (AUC) were constructed to evaluate test performance. RESULTS: Among 11,748 total patients, 3432 patients met study criteria: 1941 with PAD (mean age 69 ± 12 years) and 1491 without PAD (64 ± 14 years). The predictive model with highest performance identified PAD with an AUC 0.94 (CI = 0.92-0.96), sensitivity 0.83, specificity 0.88, accuracy 0.85, and positive predictive value (PPV) 0.90. Results were similar for the validation dataset: AUC 0.94 (CI = 0.91-0.98), sensitivity 0.91, specificity 0.85, accuracy 0.89, and PPV 0.89 (postexercise ABI comparison). CONCLUSION: An artificial intelligence-enabled analysis of a resting Doppler arterial waveform permits identification of PAD at a clinically relevant performance level.


Subject(s)
Ankle Brachial Index , Peripheral Arterial Disease , Aged , Aged, 80 and over , Ankle Brachial Index/methods , Arteries , Artificial Intelligence , Humans , Middle Aged , Peripheral Arterial Disease/diagnostic imaging , Predictive Value of Tests , Ultrasonography, Doppler
4.
Fly (Austin) ; 7(3): 187-92, 2013.
Article in English | MEDLINE | ID: mdl-23695893

ABSTRACT

We have developed a novel model system in Drosophila melanogaster to study chemotherapy-induced neurotoxicity in adult flies. Neurological deficits were measured using a manual geotactic climbing assay. The manual assay is commonly used; however, it is laborious, time-consuming, subject to human error and limited to observing one sample at a time. We have designed and built a new automated fly-counting apparatus that uses a "video capture-particle counting technology" to automatically measure 10 samples at a time, with 20 flies per sample. Climbing behavior was assessed manually, as in our previous studies, and with the automated apparatus within the same experiment yielding statistically similar results. Both climbing endpoints as well as the climbing rate can be measured in the apparatus, giving the assay more versatility than the manual assay. Automation of our climbing assay reduces variability, increases productivity and enables high throughput drug screens for neurotoxicity.


Subject(s)
Antineoplastic Agents/toxicity , Cisplatin/toxicity , Drosophila melanogaster/drug effects , Neurotoxicity Syndromes/diagnosis , Toxicity Tests/instrumentation , Animals , Drosophila melanogaster/physiology , Movement/physiology , Neurotoxicity Syndromes/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...