Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Radiat Oncol Biol Phys ; 118(5): 1371-1378, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38211641

ABSTRACT

PURPOSE: Patients with glioblastoma who are older or have poor performance status (PS) experience particularly poor clinical outcomes. At the time of study initiation, these patients were treated with short-course radiation therapy (40 Gy in 15 fractions). Olaparib is an oral inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase (PARP) that is well tolerated as a single agent but exacerbates acute radiation toxicity in extracranial sites. Preclinical data predicted that PARP inhibitors would enhance radiosensitivity in glioblastoma without exacerbating adverse effects on the normal brain. METHODS AND MATERIALS: Phase 1 of the PARADIGM trial was a 3+3 dose-escalation study testing olaparib in combination with radiation therapy (40 Gy 15 fractions) in patients with newly diagnosed glioblastoma who were unsuitable for radical treatment either because they were aged 70 years or older (World Health Organization PS 0-1) or aged 18 to 69 years with PS 2. The primary outcome was the recommended phase 2 dose of olaparib. Secondary endpoints included safety and tolerability, overall survival, and progression-free survival. Effects on cognitive function were assessed via the Mini Mental State Examination. RESULTS: Of 16 eligible patients (56.25% male; median age, 71.5 years [range, 44-78]; 75% PS 0-1), 1 dose-limiting toxicity was reported (grade 3 agitation). Maximum tolerated dose was not reached and the recommended phase 2 dose was determined as 200 mg twice daily. Median overall survival and progression-free survival were 10.8 months (80% CI, 7.3-11.4) and 5.5 months (80% CI, 3.9-5.9), respectively. Mini Mental State Examination plots indicated that cognitive function was not adversely affected by the olaparib-radiation therapy combination. CONCLUSIONS: Olaparib can be safely combined with hypofractionated brain radiation therapy and is well tolerated in patients unsuitable for radical chemoradiation. These results enabled initiation of a randomized phase 2 study and support future trials of PARP inhibitors in combination with radiation therapy for patients with brain tumors.


Subject(s)
Brain Neoplasms , Glioblastoma , Piperazines , Humans , Male , Aged , Female , Glioblastoma/drug therapy , Glioblastoma/radiotherapy , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Phthalazines/adverse effects
2.
Clin Transl Radiat Oncol ; 8: 12-16, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29594237

ABSTRACT

Glioblastoma has a dismal prognosis and molecular targeted agents have failed to improve outcomes to date. PARADIGM-2 is a phase I dose escalation study evaluating olaparib plus radiotherapy ±â€¯temozolomide in newly diagnosed glioblastoma, using MGMT methylation status to stratify patients and inform treatment schedules.

3.
Front Oncol ; 7: 141, 2017.
Article in English | MEDLINE | ID: mdl-28730140

ABSTRACT

The adaptive immune system depends on the sequence of antigen presentation, activation, and then inhibition to mount a proportionate response to a threat. Tumors evade the immune response partly by suppressing T-cell activity using immune checkpoints. The use of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death 1 (PD-1), and programmed cell death ligand 1 (PD-L1) antibodies counteract this suppression, thereby enhancing the antitumor activity of the immune system. This approach has proven efficacy in melanoma, renal cancer, and lung cancer. There is growing evidence that the central nervous system is accessible to the immune system in the diseased state. Moreover, glioblastomas (GBMs) attract CTLA-4-expressing T-cells and express PD-L1, which inhibit activation and continuation of a cytotoxic T-cell response, respectively. This may contribute to the evasion of the host immune response by GBM. Trials are in progress to determine if checkpoint inhibitors will be of benefit in GBM. Radiotherapy could also be helpful in promoting inflammation, enhancing the immunogenicity of tumors, disrupting the blood-brain barrier and creating greater antigen release. The combination of radiotherapy and checkpoint inhibitors has been promising in preclinical trials but is yet to show efficacy in humans. In this review, we summarize the mechanism and current evidence for checkpoint inhibitors in gliomas and other solid tumors, examine the rationale of combining radiotherapy with checkpoint inhibitors, and discuss the potential benefits and pitfalls of this approach.

4.
FEBS J ; 282(15): 2796-805, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25864878

ABSTRACT

Increased glucose metabolism in cancer cells is a phenomenon that has been known for over 90 years, allowing maximal cell growth through faster ATP production and redistribution of carbons towards nucleotide, protein and fatty acid synthesis. Recently, metabolites that can promote tumorigeneis by altering the epigenome have been identified. These 'oncometabolites' include the tricarboxylic acid cycle metabolites succinate and fumarate, whose levels are elevated in rare tumours with succinate dehydrogenase and fumarate hydratase mutations, respectively. 2-Hydroxyglutarate is another oncometabolite; it is produced de novo as a result of the mutation of isocitrate dehydrogenase, and is commonly found in gliomas and acute myeloid leukaemia. Interestingly, the structural similarity of these oncometabolites to their precursor metabolite, α-ketoglutarate, explains the tumorigenic potential of these metabolites, by competitive inhibition of a superfamily of enzymes called the α-ketoglutarate-dependent dioxygenases. These enzymes utilize α-ketoglutarate as a cosubstrate, and are involved in fatty acid metabolism, oxygen sensing, collagen biosynthesis, and modulation of the epigenome. They include enzymes that are involved in regulating gene expression via DNA and histone tail demethylation. In this review, we will focus on the link between metabolism and epigenetics, and how we may target oncometabolite-induced tumorigenesis in the future.


Subject(s)
Genetic Engineering , Neoplasms/metabolism , Epigenesis, Genetic , Genetic Therapy , Humans , Neoplasms/genetics , Neoplasms/therapy
5.
Br J Neurosurg ; 28(3): 351-5, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24111708

ABSTRACT

OBJECTIVE: It is now accepted that the concomitant administration of temozolomide with radiotherapy (Stupp regime), in the treatment of patients with newly diagnosed glioblastoma multiforme (GBM), significantly improves survival and this practice has been adopted locally since 2004. However, survival outcomes in cancer can vary in different population groups, and outcomes can be affected by a number of local factors including socioeconomic status. In the West of Scotland, we have one of the worse socioeconomic status and overall health record for a western European country. With the ongoing reorganisation and rationalisation in the National Health Service, the addition of prolonged courses of chemotherapy to patients' management significantly adds to the financial burden of a cash stripped NHS. A survival analysis in patients with GBM was therefore performed, comparing outcomes of pre- and post-introduction of the Stupp regime, to justify the current practice. MATERIALS AND METHODS: Prospectively collected clinical data were analysed in 105 consecutive patients receiving concurrent chemoradiotherapy (Stupp regime) following surgical treatment of GBM between December 2004 and February 2009. This was compared to those of 106 consecutive GBM patients who had radical radiotherapy (pre-Stupp regime) post-surgery between January 2001 and February 2006. RESULTS: The median overall survival for the post-Stupp cohort was 15.3 months (range, 2.83-50.5 months), with 1-year and 2-year overall survival rates of 65.7% and 19%, respectively. This was in comparison with the median overall pre-Stupp survival of 10.7 months, with 1-year and 2-year survival rates of 42.6% and 12%, respectively (log-rank test, p < 0.001). Multivariate Cox regression analysis showed that independent prognostic factors for better survival were younger age, greater extent of surgical resection and a post-operative chemoradiotherapy regime. CONCLUSION: Significant survival benefit has been achieved, following the introduction of the Stupp regime, in GBM patients in the West of Scotland.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/mortality , Brain Neoplasms/therapy , Chemoradiotherapy/mortality , Dacarbazine/analogs & derivatives , Glioblastoma/mortality , Glioblastoma/therapy , Adolescent , Adult , Age Factors , Aged , Combined Modality Therapy , Dacarbazine/therapeutic use , Female , Humans , Kaplan-Meier Estimate , Karnofsky Performance Status , Male , Middle Aged , Neurosurgical Procedures , Scotland/epidemiology , Survival Analysis , Temozolomide , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...