Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 9(11)2024 May 16.
Article in English | MEDLINE | ID: mdl-38753465

ABSTRACT

Glycogen storage disease type III (GSDIII) is a rare metabolic disorder due to glycogen debranching enzyme (GDE) deficiency. Reduced GDE activity leads to pathological glycogen accumulation responsible for impaired hepatic metabolism and muscle weakness. To date, there is no curative treatment for GSDIII. We previously reported that 2 distinct dual AAV vectors encoding for GDE were needed to correct liver and muscle in a GSDIII mouse model. Here, we evaluated the efficacy of rapamycin in combination with AAV gene therapy. Simultaneous treatment with rapamycin and a potentially novel dual AAV vector expressing GDE in the liver and muscle resulted in a synergic effect demonstrated at biochemical and functional levels. Transcriptomic analysis confirmed synergy and suggested a putative mechanism based on the correction of lysosomal impairment. In GSDIII mice livers, dual AAV gene therapy combined with rapamycin reduced the effect of the immune response to AAV observed in this disease model. These data provide proof of concept of an approach exploiting the combination of gene therapy and rapamycin to improve efficacy and safety and to support clinical translation.


Subject(s)
Dependovirus , Disease Models, Animal , Genetic Therapy , Genetic Vectors , Liver , Sirolimus , Animals , Sirolimus/pharmacology , Sirolimus/therapeutic use , Dependovirus/genetics , Genetic Therapy/methods , Mice , Liver/metabolism , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Muscle, Skeletal/metabolism , Phenotype , Glycogen Debranching Enzyme System/genetics , Glycogen Debranching Enzyme System/metabolism , Humans , Male
2.
J Clin Invest ; 134(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38015640

ABSTRACT

Glycogen storage disease type III (GSDIII) is a rare inborn error of metabolism affecting liver, skeletal muscle, and heart due to mutations of the AGL gene encoding for the glycogen debranching enzyme (GDE). No curative treatment exists for GSDIII. The 4.6 kb GDE cDNA represents the major technical challenge toward the development of a single recombinant adeno-associated virus-derived (rAAV-derived) vector gene therapy strategy. Using information on GDE structure and molecular modeling, we generated multiple truncated GDEs. Among them, an N-terminal-truncated mutant, ΔNter2-GDE, had a similar efficacy in vivo compared with the full-size enzyme. A rAAV vector expressing ΔNter2-GDE allowed significant glycogen reduction in heart and muscle of Agl-/- mice 3 months after i.v. injection, as well as normalization of histology features and restoration of muscle strength. Similarly, glycogen accumulation and histological features were corrected in a recently generated Agl-/- rat model. Finally, transduction with rAAV vectors encoding ΔNter2-GDE corrected glycogen accumulation in an in vitro human skeletal muscle cellular model of GSDIII. In conclusion, our results demonstrated the ability of a single rAAV vector expressing a functional mini-GDE transgene to correct the muscle and heart phenotype in multiple models of GSDIII, supporting its clinical translation to patients with GSDIII.


Subject(s)
Glycogen Debranching Enzyme System , Glycogen Storage Disease Type III , Humans , Mice , Rats , Animals , Glycogen Storage Disease Type III/genetics , Glycogen Storage Disease Type III/therapy , Glycogen Debranching Enzyme System/genetics , Muscle, Skeletal/metabolism , Glycogen/metabolism , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...