Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
Pharm Res ; 40(11): 2747-2758, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37833570

ABSTRACT

PURPOSE: There is growing interest in seeking pharmacological activation of neurolysin (Nln) for stroke treatment. Discovery of central nervous system drugs remains challenging due to the protection of the blood-brain barrier (BBB). The previously reported peptidomimetic Nln activators display unsatisfactory BBB penetration. Herein, we investigate the next generation of non-peptidomimetic Nln activators with high BBB permeability. METHODS: A BBB-mimicking model was used to evaluate their in vitro BBB permeability. Protein binding, metabolic stability, and efflux assays were performed to determine their unbound fraction, half-lives in plasma and brains, and dependence of BBB transporter P-glycoprotein (P-gp). The in vivo pharmacokinetic profiles were elucidated in healthy and stroke mice. RESULTS: Compounds KS52 and KS73 out of this generation exhibit improved peptidase activity and BBB permeability compared to the endogenous activator and previous peptidomimetic activators. They show reasonable plasma and brain protein binding, improved metabolic stability, and independence of P-gp-mediated efflux. In healthy animals, they rapidly distribute into brains and reach peak levels of 18.69% and 12.10% injected dose (ID)/ml at 10 min. After 4 h, their total brain concentrations remain 7.78 and 12.34 times higher than their A50(minimal concentration required for enhancing 50% peptidase activity). Moreover, the ipsilateral hemispheres of stroke animals show comparable uptake to the corresponding contralateral hemispheres and healthy brains. CONCLUSIONS: This study provides essential details about the pharmacokinetic properties of a new generation of potent non-peptidomimetic Nln activators with high BBB permeability and warrants the future development of these agents as potential neuroprotective pharmaceutics for stroke treatment.


Subject(s)
Peptidomimetics , Stroke , Mice , Animals , Blood-Brain Barrier/metabolism , Peptidomimetics/metabolism , Metalloendopeptidases/metabolism , Stroke/drug therapy , Permeability
2.
Pharmaceutics ; 15(5)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37242599

ABSTRACT

Our lab previously established that metformin, a first-line type two diabetes treatment, activates the Nrf2 pathway and improves post-stroke recovery. Metformin's brain permeability value and potential interaction with blood-brain barrier (BBB) uptake and efflux transporters are currently unknown. Metformin has been shown to be a substrate of organic cationic transporters (Octs) in the liver and kidneys. Brain endothelial cells at the BBB have been shown to express Octs; thus, we hypothesize that metformin uses Octs for its transport across the BBB. We used a co-culture model of brain endothelial cells and primary astrocytes as an in vitro BBB model to conduct permeability studies during normoxia and hypoxia using oxygen-glucose deprivation (OGD) conditions. Metformin was quantified using a highly sensitive LC-MS/MS method. We further checked Octs protein expression using Western blot analysis. Lastly, we completed a plasma glycoprotein (P-GP) efflux assay. Our results showed that metformin is a highly permeable molecule, uses Oct1 for its transport, and does not interact with P-GP. During OGD, we found alterations in Oct1 expression and increased permeability for metformin. Additionally, we showed that selective transport is a key determinant of metformin's permeability during OGD, thus, providing a novel target for improving ischemic drug delivery.

3.
Eur J Med Chem ; 254: 115309, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37054561

ABSTRACT

Using the structure of gliotoxin as a starting point, we have prepared two different chemotypes with selective affinity to the kappa opioid receptor (KOR). Using medicinal chemistry approaches and structure-activity relationship (SAR) studies, structural features required for the observed affinity were identified, and advanced molecules with favorable Multiparameter Optimization (MPO) and Ligand Lipophilicity (LLE) profiles were prepared. Using the Thermal Place Preference Test (TPPT), we have shown that compound2 blocks the antinociceptive effect of U50488, a known KOR agonist. Multiple reports suggest that modulation of KOR signaling is a promising therapeutic strategy in treating neuropathic pain (NP). As a proof-of-concept study, we tested compound 2 in a rat model of NP and recorded its ability to modulate sensory and emotional pain-related behaviors. Observed in vitro and in vivo results suggest that these ligands can be used to develop compounds with potential application as pain therapeutics.


Subject(s)
Neuralgia , Receptors, Opioid , Animals , Rats , Analgesics, Opioid/chemistry , Diketopiperazines , Ligands , Receptors, Opioid, kappa , 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/chemistry
4.
Fluids Barriers CNS ; 20(1): 17, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36899432

ABSTRACT

Electronic nicotine delivery systems (ENDS), also commonly known as electronic cigarettes (e-cigs) are considered in most cases as a safer alternative to tobacco smoking and therefore have become extremely popular among all age groups and sex. It is estimated that up to 15% of pregnant women are now using e-cigs in the US which keeps increasing at an alarming rate. Harmful effects of tobacco smoking during pregnancy are well documented for both pregnancy and postnatal health, however limited preclinical and clinical studies exist to evaluate the long-term effects of prenatal e-cig exposure on postnatal health. Therefore, the aim of our study is to evaluate the effect of maternal e-cig use on postnatal blood-brain barrier (BBB) integrity and behavioral outcomes of mice of varying age and sex. In this study, pregnant CD1 mice (E5) were exposed to e-Cig vapor (2.4% nicotine) until postnatal day (PD) 7. Weight of the offspring was measured at PD0, PD7, PD15, PD30, PD45, PD60 and PD90. The expression of structural elements of the BBB, tight junction proteins (ZO-1, claudin-5, occludin), astrocytes (GFAP), pericytes (PDGFRß) and the basement membrane (laminin α1, laminin α4), neuron specific marker (NeuN), water channel protein (AQP4) and glucose transporter (GLUT1) were analyzed in both male and female offspring using western blot and immunofluorescence. Estrous cycle was recorded by vaginal cytology method. Long-term motor and cognitive functions were evaluated using open field test (OFT), novel object recognition test (NORT) and morris water maze test (MWMT) at adolescence (PD 40-45) and adult (PD 90-95) age. In our study, significantly reduced expression of tight junction proteins and astrocyte marker were observed in male and female offspring until PD 90 (P < 0.05). Additionally, prenatally e-cig exposed adolescent and adult offspring showed impaired locomotor, learning, and memory function compared to control offspring (P < 0.05). Our findings suggest that prenatal e-cig exposure induces long-term neurovascular changes of neonates by disrupting postnatal BBB integrity and worsening behavioral outcomes.


Subject(s)
Electronic Nicotine Delivery Systems , Vaping , Pregnancy , Female , Animals , Male , Mice , Humans , Blood-Brain Barrier , Nicotine , Tight Junction Proteins
5.
Methods Mol Biol ; 2616: 191-203, 2023.
Article in English | MEDLINE | ID: mdl-36715936

ABSTRACT

The blood-brain barrier (BBB) is a dynamic interface responsible for maintaining central nervous system (CNS) homeostasis. An intact BBB protects the brain from undesired compounds and proteins from the blood; however, BBB impairment is involved in various pathological conditions including stroke. In vivo evaluation of BBB integrity in the post-stroke brain is important for investigating stroke-induced CNS pathogenesis and developing CNS-targeted therapeutic agents. In this chapter, we describe both quantitative and morphometric methods and tools to evaluate BBB integrity in vivo. These methods do not require expensive magnetic resonance imaging (MRI) and computed tomography (CT) imaging capabilities and can be conducted in research laboratories with access to a confocal microscope and fluorescence microplate reader.


Subject(s)
Blood-Brain Barrier , Stroke , Humans , Blood-Brain Barrier/metabolism , Brain/metabolism , Stroke/metabolism , Central Nervous System/metabolism , Biological Transport
6.
Cell Mol Neurobiol ; 43(5): 2105-2127, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36201091

ABSTRACT

Astrocytes have been implicated in the onset and complication of various central nervous system (CNS) injuries and disorders. Uncontrolled astrogliosis (gliosis), while a necessary process for recovery after CNS trauma, also causes impairments in CNS performance and functions. The ability to preserve astrocyte health and better regulate the gliosis process could play a major role in controlling damage in the aftermath of acute insults and during chronic dysfunction. Here in, we demonstrate the ability of dental pulp-derived stem cells (DPSCs) in protecting the health of astrocytes during induced gliosis. First of all, we have characterized the expression of genes in primary astrocytes that are relevant to the pathological conditions of CNS by inducing gliosis. Subsequently, we found that astrocytes co-cultured with DPSCs reduced ROS production, NRF2 and GCLM expressions, mitochondrial membrane potential, and mitochondrial functions compared to the astrocytes that were not co-cultured with DPSCs in gliosis condition. In addition, hyperactive autophagy was also decreased in astrocytes that were co-cultured with DPSCs compared to the astrocytes that were not co-cultured with DPSCs during gliosis. This reversal and mitigation of gliosis in astrocytes were partly due to induction of neurogenesis in DPSCs through enhanced expressions of the neuronal genes like GFAP, NeuN, and Synapsin in DPSCs and by secretion of higher amounts of neurotropic factors, such as BDNF, GDNF, and TIMP-2. Protein-Protein docking analysis suggested that BDNF and GDNF can bind with CSPG4 and block the downstream signaling. Together these findings demonstrate novel functions of DPSCs to preserve astrocyte health during gliosis.


Subject(s)
Astrocytes , Gliosis , Humans , Brain-Derived Neurotrophic Factor , Dental Pulp , Glial Cell Line-Derived Neurotrophic Factor , Cells, Cultured
7.
Pharm Res ; 40(1): 77-105, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36380168

ABSTRACT

Nucleic acid-based therapeutic molecules including small interfering RNA (siRNA), microRNA(miRNA), antisense oligonucleotides (ASOs), messenger RNA (mRNA), and DNA-based gene therapy have tremendous potential for treating diseases in the central nervous system (CNS). However, achieving clinically meaningful delivery to the brain and particularly to target cells and sub-cellular compartments is typically very challenging. Mediating cell-specific delivery in the CNS would be a crucial advance that mitigates off-target effects and toxicities. In this review, we describe these challenges and provide contemporary evidence of advances in cellular and sub-cellular delivery using a variety of delivery mechanisms and alternative routes of administration, including the nose-to-brain approach. Strategies to achieve subcellular localization, endosomal escape, cytosolic bioavailability, and nuclear transfer are also discussed. Ultimately, there are still many challenges to translating these experimental strategies into effective and clinically viable approaches for treating patients.


Subject(s)
Drug Delivery Systems , MicroRNAs , Nucleic Acids , RNA, Small Interfering , Humans , Blood-Brain Barrier , Brain , MicroRNAs/therapeutic use , Nucleic Acids/therapeutic use , Oligonucleotides, Antisense/therapeutic use , RNA, Small Interfering/therapeutic use
9.
Fluids Barriers CNS ; 19(1): 74, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36085043

ABSTRACT

BACKGROUND: The short and long-term health effects of JUUL electronic cigarette (e-Cig) are largely unknown and warrant extensive research. We hypothesized that JUUL exposure could cause cerebrovascular toxicities impacting the progression and outcome of ischemic stroke comparable to tobacco smoke (TS) exposure. METHODS: We exposed male C57 mice to TS/JUUL vapor for 14 days. LCMS/MS was used to measure brain and plasma nicotine and cotinine level. Transient middle cerebral artery occlusion (tMCAO) followed by reperfusion was used to mimic ischemic stroke. Plasma levels of IL-6 and thrombomodulin were assessed by enzyme-linked immunosorbent assay. At the same time, western blotting was used to study blood-brain barrier (BBB) tight junction (TJ) proteins expression and key inflammatory and oxidative stress markers. RESULTS: tMCAO upregulated IL-6 and decreased plasma thrombomodulin levels. Post-ischemic brain injury following tMCAO was significantly worsened by JUUL/TS pre-exposure. TJ proteins expression was also downregulated by JUUL/TS pre-exposure after tMCAO. Like TS, exposure to JUUL downregulated the expression of the antioxidant Nrf2. ICAM-1 was upregulated in mice subjected to tMCAO following pre-exposure to TS or JUUL, with a greater effect of TS than JUUL. CONCLUSIONS: These results suggest that JUUL exposure could negatively impact the cerebrovascular system, although to a lesser extent than TS exposure.


Subject(s)
Electronic Nicotine Delivery Systems , Ischemic Stroke , Animals , Blood-Brain Barrier , Interleukin-6 , Male , Mice , Thrombomodulin , Tight Junction Proteins
10.
Int J Mol Sci ; 23(15)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-35955647

ABSTRACT

Proper regulation of energy metabolism in the brain is crucial for maintaining brain activity in physiological and different pathophysiological conditions. Ischemic stroke has a complex pathophysiology which includes perturbations in the brain energy metabolism processes which can contribute to worsening of brain injury and stroke outcome. Smoking and diabetes are common risk factors and comorbid conditions for ischemic stroke which have also been associated with disruptions in brain energy metabolism. Simultaneous presence of these conditions may further alter energy metabolism in the brain leading to a poor clinical prognosis after an ischemic stroke event. In this review, we discuss the possible effects of smoking and/or diabetes on brain glucose utilization and mitochondrial energy metabolism which, when present concurrently, may exacerbate energy metabolism in the ischemic brain. More research is needed to investigate brain glucose utilization and mitochondrial oxidative metabolism in ischemic stroke in the presence of smoking and/or diabetes, which would provide further insights on the pathophysiology of these comorbid conditions and facilitate the development of therapeutic interventions.


Subject(s)
Brain Ischemia , Diabetes Mellitus , Ischemic Stroke , Stroke , Brain/metabolism , Brain Ischemia/metabolism , Diabetes Mellitus/metabolism , Energy Metabolism , Glucose/metabolism , Humans , Smoking/adverse effects , Stroke/complications
11.
Clin Transl Sci ; 15(9): 2057-2074, 2022 09.
Article in English | MEDLINE | ID: mdl-35677992

ABSTRACT

Advances in immuno-oncology have provided a variety of novel therapeutics that harness the innate immune system to identify and destroy neoplastic cells. It is noteworthy that acceptable safety profiles accompany the development of these targeted therapies, which result in efficacious cancer treatment with higher survival rates and lower toxicities. Adoptive cellular therapy (ACT) has shown promising results in inducing sustainable remissions in patients suffering from refractory diseases. Two main types of ACT include engineered Chimeric Antigen Receptor (CAR) T cells and T cell receptor (TCR) T cells. The application of these immuno-therapies in the last few years has been successful and has demonstrated a safe and rapid treatment regimen for solid and non-solid tumors. The current review presents an insight into the clinical pharmacology aspects of immuno-therapies, especially CAR-T cells. Here, we summarize the current knowledge of TCR and CAR-T cell immunotherapy with particular focus on the structure of CAR-T cells, the effects and toxicities associated with these therapies in clinical trials, risk mitigation strategies, dose selection approaches, and cellular kinetics. Finally, the quantitative approaches and modeling techniques used in the development of CAR-T cell therapies are described.


Subject(s)
Neoplasms , Pharmacology, Clinical , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes
12.
Fluids Barriers CNS ; 19(1): 46, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35672716

ABSTRACT

BACKGROUND: Knowledge of the entry receptors responsible for SARS-CoV-2 is key to understand the neural transmission and pathogenesis of COVID-19 characterized by a neuroinflammatory scenario. Understanding the brain distribution of angiotensin converting enzyme 2 (ACE2), the primary entry receptor for SARS-CoV-2, remains mixed. Smoking has been shown as a risk factor for COVID-19 severity and it is not clear how smoking exacerbates the neural pathogenesis in smokers. METHODS: Immunohistochemistry, real-time PCR and western blot assays were used to systemically examine the spatial-, cell type- and isoform-specific expression of ACE2 in mouse brain and primary cultured brain cells. Experimental smoking exposure was conducted to evaluate the effect of smoking on brain expression. RESULTS: We observed ubiquitous expression of ACE2 but uneven brain distribution, with high expression in the cerebral microvasculature, medulla oblongata, hypothalamus, subventricular zones, and meninges around medulla oblongata and hypothalamus. Co-staining with cell type-specific markers demonstrates ACE2 is primarily expressed in astrocytes around the microvasculature, medulla oblongata, hypothalamus, ventricular and subventricular zones of cerebral ventricles, and subependymal zones in rhinoceles and rostral migratory streams, radial glial cells in the lateral ventricular zones, tanycytes in the third ventricle, epithelial cells and stroma in the cerebral choroid plexus, as well as cerebral pericytes, but rarely detected in neurons and cerebral endothelial cells. ACE2 expression in astrocytes is further confirmed in primary cultured cells. Furthermore, isoform-specific analysis shows astrocyte ACE2 has the peptidase domain responsible for SARS-CoV-2 entry, indicating astrocytes are indeed vulnerable to SARS-CoV-2 infection. Finally, our data show experimental tobacco smoking and electronic nicotine vaping exposure increase proinflammatory and/or immunomodulatory cytokine IL-1a, IL-6 and IL-5 without significantly affecting ACE2 expression in the brain, suggesting smoking may pre-condition a neuroinflammatory state in the brain. CONCLUSIONS: The present study demonstrates a spatial- and cell type-specific expression of ACE2 in the brain, which might help to understand the acute and lasting post-infection neuropsychological manifestations in COVID-19 patients. Our data highlights a potential role of astrocyte ACE2 in the neural transmission and pathogenesis of COVID-19. This also suggests a pre-conditioned neuroinflammatory and immunocompromised scenario might attribute to exacerbated COVID-19 severity in the smokers.


Subject(s)
COVID-19 , Vaping , Angiotensin-Converting Enzyme 2 , Animals , Astrocytes , Endothelial Cells , Humans , Mice , SARS-CoV-2 , Smoking/adverse effects , Synaptic Transmission , Tobacco Smoking
13.
Bioorg Med Chem Lett ; 64: 128669, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35292343

ABSTRACT

Modulating peptidase neurolysin (Nln) has been identified as a potential cerebroprotective target for the development of therapeutics for ischemic stroke. Continued structure-activity relationship studies on peptidomimetic small molecule activators of Nln bearing electron-donating and electron- withdrawing functionalized phenyls are explored. Incorporation of fluorine or trifluoromethyl groups produces Nln activators with enhanced A50, while methoxy substitution produces derivatives with enhanced Amax. Selected activators containing methoxy or trifluoromethyl substitution are selective for Nln over related peptidases and possess increased blood-brain barrier penetrability than initial hits.


Subject(s)
Peptidomimetics , Metalloendopeptidases/metabolism , Peptide Hydrolases/metabolism , Peptidomimetics/pharmacology , Structure-Activity Relationship
14.
Pharm Res ; 39(7): 1587-1598, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35239135

ABSTRACT

PURPOSE: Neurolysin (Nln) is a peptidase that functions to preserve the brain following ischemic stroke by hydrolyzing various neuropeptides. Nln activation has emerged as an attractive drug discovery target for treatment of ischemic stroke. Among first-in-class peptidomimetic Nln activators, we selected three lead compounds (9d, 10c, 11a) for quantitative pharmacokinetic analysis to provide valuable information for subsequent preclinical development. METHODS: Pharmacokinetic profile of these compounds was studied in healthy and ischemic stroke-induced mice after bolus intravenous administration. Brain concentration and brain uptake clearance (Kin) was calculated from single time point analysis. The inter-relationship between LogP with in-vitro and in-vivo permeability was studied to determine CNS penetration. Brain slice uptake method was used to study tissue binding, whereas P-gp-mediated transport was evaluated to understand the potential brain efflux of these compounds. RESULTS: According to calculated parameters, all three compounds showed a detectable amount in the brain after intravenous administration at 4 mg/kg; however, 11a had the highest brain concentration and brain uptake clearance. A strong correlation was documented between in-vitro and in-vivo permeability data. The efflux ratio of 10c was ~6-fold higher compared to 11a and correlated well with its lower Kin value. In experimental stroke animals, the Kin of 11a was significantly higher in ischemic vs. contralateral and intact hemispheres, though it remained below its A50 value required to activate Nln. CONCLUSIONS: Collectively, these preclinical pharmacokinetic studies reveal promising BBB permeability of 11a and indicate that it can serve as an excellent lead for developing improved drug-like Nln activators.


Subject(s)
Ischemic Stroke , Peptidomimetics , Stroke , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Metalloendopeptidases , Mice , Peptidomimetics/metabolism , Stroke/drug therapy
16.
J Pharmacol Exp Ther ; 379(3): 260-269, 2021 11.
Article in English | MEDLINE | ID: mdl-34663677

ABSTRACT

Opioids play crucial roles in the regulation of many important brain functions including pain, memory, and neurogenesis. Activation of opioid receptors is reported to have neuroprotective effects after ischemic reperfusion injury. The objective of this study was to understand the role of biphalin and nociceptin, opioid receptor agonists, on blood-brain barrier (BBB) integrity during ischemic stroke. In this study, we aimed to measure the effect of biphalin and nociceptin on astrocytic glutamate uptake and on expression of excitatory amino acid transporter to study the indirect role of astrocytes on opioid receptor-mediated BBB protection during in vitro stroke conditions. We used mouse brain endothelial cells (bEnd.3) and primary astrocytes as an in vitro BBB model. Restrictive BBB properties were evaluated by measuring [14C] sucrose paracellular permeability and the redistribution of the tight junction proteins. The protective effect of biphalin and nociceptin on BBB integrity was assessed after exposing cells to oxygen glucose deprivation (OGD) and glutamate. It was observed that combined stress (2 mM glutamate and 2 hours of OGD) significantly reduced glutamate uptake by astrocytes; however, biphalin and nociceptin treatment increased glutamate uptake in primary astrocytes. This suggests a role of increased astrocytic buffering capacity in opioid-meditated protection of the BBB during ischemic stroke. It was also found that the combined stress significantly increased [14C] sucrose paracellular permeability in an in vitro BBB model. Biphalin and nociceptin treatment attenuated the effect of the combined stress, which was reversed by the opioid receptor antagonists, suggesting the role of opioid receptors in biphalin and nociception's BBB modulatory activity. SIGNIFICANT STATEMENT: There is an unmet need for discovering new efficacious therapeutic agents to offset the deleterious effects of ischemic stroke. Given the confirmed roles of opioid receptors in the regulation of central nervous system functions, opioid receptor agonists have been studied as potential neuroprotective options in ischemic conditions. This study adds to the knowledge about the cerebrovascular protective effects of opioid receptor agonists and provides insight about the mechanism of action of these agents.


Subject(s)
Analgesics, Opioid/pharmacology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Enkephalins/pharmacology , Glutamic Acid/metabolism , Opioid Peptides/pharmacology , Analgesics/pharmacology , Animals , Animals, Newborn , Capillary Permeability/drug effects , Capillary Permeability/physiology , Coculture Techniques , Dose-Response Relationship, Drug , Mice , Neuroprotective Agents/pharmacology , Receptors, Opioid/agonists , Receptors, Opioid/metabolism , Nociceptin
17.
J Med Chem ; 64(17): 12705-12722, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34436882

ABSTRACT

Peptidase neurolysin (Nln) is an enzyme that functions to cleave various neuropeptides. Upregulation of Nln after stroke has identified the enzyme as a critical endogenous cerebroprotective mechanism and validated target for the treatment of ischemic stroke. Overexpression of Nln in a mouse model of stroke results in dramatic improvement of stroke outcomes, while pharmacological inhibition aggravates them. Activation of Nln has therefore emerged as an intriguing target for drug discovery efforts for ischemic stroke. Herein, we report the discovery and hit-to-lead optimization of first-in-class Nln activators based on histidine-containing dipeptide hits identified from a virtual screen. Adopting a peptidomimetic approach provided lead compounds that retain the pharmacophoric histidine moiety and possess single-digit micromolar potency over 40-fold greater than the hit scaffolds. These compounds exhibit 5-fold increased brain penetration, significant selectivity over highly homologous peptidases, greater than 65-fold increase in mouse brain stability, and 'drug-like' fraction unbound in the brain.


Subject(s)
Brain/metabolism , Enzyme Activation/drug effects , Metalloendopeptidases/metabolism , Peptidomimetics/pharmacology , Drug Discovery , Gene Expression Regulation/drug effects , Metalloendopeptidases/chemistry , Metalloendopeptidases/genetics , Molecular Structure , Peptidomimetics/chemical synthesis , Peptidomimetics/chemistry , Protein Conformation , Structure-Activity Relationship
18.
Life Sci ; 274: 119343, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33716063

ABSTRACT

Aging is a risk factor for major central nervous system (CNS) disorders. More specifically, aging can be inked to neurodegenerative diseases (NDs) because of its deteriorating impact on neurovascular unit (NVU). Metformin, a first line FDA-approved anti-diabetic drug, has gained increasing interest among researchers for its role in improving aging-related neurodegenerative disorders. Additionally, numerous studies have illustrated metformin's role in ischemic stroke, a cerebrovascular disorder in which the NVU becomes dysfunctional which can lead to permanent life-threatening disabilities. Considering metformin's beneficial preclinical actions on various disorders, and the drug's role in alleviating severity of these conditions through involvement in commonly characterized cellular pathways, we discuss the potential of metformin as a suitable drug candidate for repurposing in CNS disorders.


Subject(s)
Aging/drug effects , Brain Ischemia/drug therapy , Drug Repositioning/methods , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Neurodegenerative Diseases/drug therapy , Stroke/drug therapy , Aging/pathology , Animals , Brain Ischemia/pathology , Humans , Neurodegenerative Diseases/pathology , Stroke/pathology
19.
Methods Mol Biol ; 2367: 47-72, 2021.
Article in English | MEDLINE | ID: mdl-32789777

ABSTRACT

The blood-brain barrier (BBB) is a vital biological interface that regulates transfer of different molecules between blood and brain and, therefore, maintains the homeostatic environment of the CNS. In order to perform high-throughput screening of therapeutics in drug discovery, specific properties of the BBB are investigated within in vitro BBB platforms. In this chapter, we detail the process and steps for the iPSC to BMEC and astrocyte differentiation as well as TEER and permeability measurement in Transwell platform of in vitro BBB model. Also, advanced microfluidic iPSCs-derived BMECs on chip and permeability measurement within this model have been elucidated.


Subject(s)
Blood-Brain Barrier , Astrocytes , Brain , Cells, Cultured , Coculture Techniques , Endothelial Cells , Models, Biological , Permeability
20.
J Pharmacol Exp Ther ; 375(3): 498-509, 2020 12.
Article in English | MEDLINE | ID: mdl-33033170

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 virus, is turning out to be one of the most devastating global pandemics in the history of humankind. There is a shortage of effective therapeutic strategies or preventative vaccines for this disease to date. A rigorous investigation is needed for identifying and developing more effective therapeutic strategies for COVID-19. Angiotensin-converting enzyme 2 (ACE2), a crucial factor in COVID-19 pathogenesis, has been identified as a potential target for COVID-19 treatment. Smoking and vaping are potential risk factors for COVID-19 that are also shown to upregulate ACE2 expression. In this review, we have discussed the pathobiology of COVID-19 in the lungs and brain and the role of ACE2 in the transmission and pathobiology of this disease. Furthermore, we have shown possible interactions between nicotine/smoking and ACE2 in the lungs and brain, which could aggravate the transmission and pathobiology of COVID-19, resulting in a poor disease outcome. SIGNIFICANCE STATEMENT: This review addresses the present global pandemic of coronavirus disease 2019 (COVID-19) with respect to its pathobiology in the lungs and brain. It focuses on the potential negative impact of tobacco and nicotine exposure on the outcomes of this disease by interaction with the angiotensin-converting enzyme 2 receptor. It adds to the time-sensitive and critically important growing knowledge about the risk factors, transmission, pathobiology, and prognosis of COVID-19.


Subject(s)
COVID-19/epidemiology , Smoking/epidemiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Brain/drug effects , Brain/metabolism , Brain/virology , COVID-19/etiology , COVID-19/transmission , Humans , Lung/drug effects , Lung/metabolism , Lung/virology , Nicotine/metabolism , Nicotine/toxicity , SARS-CoV-2/pathogenicity , Smoking/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL