Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Malar J ; 23(1): 8, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178145

ABSTRACT

Africa and the United States are both large, heterogeneous geographies with a diverse range of ecologies, climates and mosquito species diversity which contribute to disease transmission and nuisance biting. In the United States, mosquito control is nationally, and regionally coordinated and in so much as the Centers for Disease Control (CDC) provides guidance, the Environmental Protection Agency (EPA) provides pesticide registration, and the states provide legal authority and oversight, the implementation is usually decentralized to the state, county, or city level. Mosquito control operations are organized, in most instances, into fully independent mosquito abatement districts, public works departments, local health departments. In some cases, municipalities engage independent private contractors to undertake mosquito control within their jurisdictions. In sub-Saharan Africa (SSA), where most vector-borne disease endemic countries lie, mosquito control is organized centrally at the national level. In this model, the disease control programmes (national malaria control programmes or national malaria elimination programmes (NMCP/NMEP)) are embedded within the central governments' ministries of health (MoHs) and drive vector control policy development and implementation. Because of the high disease burden and limited resources, the primary endpoint of mosquito control in these settings is reduction of mosquito borne diseases, primarily, malaria. In the United States, however, the endpoint is mosquito control, therefore, significant (or even greater) emphasis is laid on nuisance mosquitoes as much as disease vectors. The authors detail experiences and learnings gathered by the delegation of African vector control professionals that participated in a formal exchange programme initiated by the Pan-African Mosquito Control Association (PAMCA), the University of Notre Dame, and members of the American Mosquito Control Association (AMCA), in the United States between the year 2021 and 2022. The authors highlight the key components of mosquito control operations in the United States and compare them to mosquito control programmes in SSA countries endemic for vector-borne diseases, deriving important lessons that could be useful for vector control in SSA.


Subject(s)
Malaria , Mosquito Control , Animals , United States , Malaria/epidemiology , Africa South of the Sahara , Ecology , Disease Vectors , Mosquito Vectors
2.
Parasit Vectors ; 9: 100, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26911550

ABSTRACT

BACKGROUND: Pyrethroid resistance in African vector mosquitoes is a threat to malaria control. Resistant mosquitoes can survive insecticide doses that would normally be lethal. We studied effects of such doses on Plasmodium falciparum development inside kdr-resistant Anopheles gambiae s.s. in Uganda. METHODS: We collected An. gambiae s.s. homozygous for kdr-L1014S mutation, fed them on blood samples from 42 P. falciparum-infected local patients, then exposed them either to nets treated with sub-lethal doses of deltamethrin or to untreated nets. After seven days, we dissected 692 mosquitoes and examined their midguts for oocysts. Prevalence (proportion infected) and intensity of infection (number of oocysts per infected mosquito) were recorded for each group. RESULTS: Both prevalence and intensity of infection were significantly reduced in deltamethrin-exposed mosquitoes, compared to those exposed to untreated nets. With low doses (2.5-5.0 mg/m(2)), prevalence was reduced by 59% (95% CI = 22%-78%) and intensity by 41% (95% CI = 25%-54%). With high doses (10-16.7 mg/m(2)), prevalence was reduced by 80% (95% CI = 67%-88 %) and intensity by 34 % (95 % CI = 20%-46%). CONCLUSIONS: We showed that, with locally-sampled parasites and mosquitoes, doses of pyrethroids that are sub-lethal for resistant mosquitoes can interfere with parasite development inside mosquitoes. This mechanism could enable pyrethroid-treated nets to prevent malaria transmission despite increasing vector resistance.


Subject(s)
Anopheles/parasitology , Insecticide Resistance , Insecticides/pharmacology , Nitriles/pharmacology , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development , Pyrethrins/pharmacology , Animals , Anopheles/drug effects , Gastrointestinal Tract/parasitology , Parasite Load , Uganda
SELECTION OF CITATIONS
SEARCH DETAIL
...