Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 12860, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35896576

ABSTRACT

In this paper, we use Polyethylene Oxide (PEO) particles to control the morphology of Formamidinium (FA)-rich perovskite films and achieve large grains with improved optoelectronic properties. Consequently, a planar perovskite solar cell (PSC) is fabricated with additions of 5 wt% of PEO, and the highest PCE of 18.03% was obtained. This solar cell is also shown to retain up to 80% of its initial PCE after about 140 h of storage under the ambient conditions (average relative humidity of 62.5 ± 3.25%) in an unencapsulated state. Furthermore, the steady-state PCE of the PEO-modified PSC device remained stable for long (over 2500 s) under continuous illumination. This addition of PEO particles is shown to enable the tuning of the optoelectronic properties of perovskite films, improvements in the overall photophysical properties of PSCs, and an increase in resistance to the degradation of PSCs.

2.
Materials (Basel) ; 13(4)2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32098231

ABSTRACT

Transition metal perovskite chalcogenides are attractive solar absorber materials for renewable energy applications. Herein, we present the first-principles screened hybrid density functional theory analyses of the structural, elastic, electronic and optical properties of the two structure modifications of strontium zirconium sulfide (needle-like α-SrZrS3 and distorted ß-SrZrS3 phases). Through the analysis of the predicted electronic structures, we show that both α- and ß-SrZrS3 materials are direct band gaps absorbers, with calculated band gaps of 1.38, and 1.95 eV, respectively, in close agreement with estimates from diffuse-reflectance measurements. A strong light absorption in the visible region is predicted for the α- and ß-SrZrS3, as reflected in their high optical absorbance (in the order of 105 cm-1), with the ß-SrZrS3 phase showing stronger absorption than the α-SrZrS3 phase. We also report the first theoretical prediction of effective masses of photo-generated charge carriers in α- and ß-SrZrS3 materials. Predicted small effective masses of holes and electrons at the valence, and conduction bands, respectively, point to high mobility (high conductivity) and low recombination rate of photo-generated charge carriers in α- and ß-SrZrS3 materials, which are necessary for efficient photovoltaic conversion.

SELECTION OF CITATIONS
SEARCH DETAIL
...