Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(11)2020 May 30.
Article in English | MEDLINE | ID: mdl-32486331

ABSTRACT

Development of contaminant detection systems in various natural and industrial environments has been favored in recent years thanks to the evolution of processors and sensors. Our group works specifically on contaminant detection systems in inland waters: immediate and continuous detection is a fundamental requirement in this type of sensing. Regarding the sensors, the proposed system is based on fluorescence, since it offers a method in which there is no contact with water, which means less wear on the components and a great saving in cleaning and maintenance. On the other hand, the spectrum processing is of great importance, since it is used both in the generation of a library of fluorescence spectra taken in the laboratory and in the continuous analysis of the samples and in the comparison algorithm for identification. The validity of the system is based on the last process that is carried out in a very short time. This article describes a system to process spectra in a more accelerated way.

2.
Sensors (Basel) ; 16(3): 293, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26927113

ABSTRACT

This work analyzes the long-term functionality of HP (High-power) UV-LEDs (Ultraviolet Light Emitting Diodes) as the exciting light source in non-contact, continuous 24/7 real-time fluoro-sensing pollutant identification in inland water. Fluorescence is an effective alternative in the detection and identification of hydrocarbons. The HP UV-LEDs are more advantageous than classical light sources (xenon and mercury lamps) and helps in the development of a low cost, non-contact, and compact system for continuous real-time fieldwork. This work analyzes the wavelength, output optical power, and the effects of viscosity, temperature of the water pollutants, and the functional consistency for long-term HP UV-LED working operation. To accomplish the latter, an analysis of the influence of two types 365 nm HP UV-LEDs degradation under two continuous real-system working mode conditions was done, by temperature Accelerated Life Tests (ALTs). These tests estimate the mean life under continuous working conditions of 6200 h and for cycled working conditions (30 s ON & 30 s OFF) of 66,000 h, over 7 years of 24/7 operating life of hydrocarbon pollution monitoring. In addition, the durability in the face of the internal and external parameter system variations is evaluated.


Subject(s)
Hydrocarbons/isolation & purification , Ultraviolet Rays , Water Pollutants, Chemical/isolation & purification , Water/analysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...