Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Crohns Colitis ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747506

ABSTRACT

BACKGROUND AND AIMS: Crohn's disease (CD) is characterised by the expansion of mesenteric adipose tissue (MAT), named creeping fat (CF), which seems to be directly related to disease activity. Adipose-stem cells (ASCs) isolated from the CF of patients with CD are extremely pro-inflammatory, which persists during disease remission. We hypothesised that the dysfunctional ASCs in CD accumulate epigenetic modifications triggered by the inflammatory environment that could serve as molecular markers. METHODS: Genome-wide DNA methylome and transcriptome profiling were performed in ASCs isolated from MAT adipose-tissue biopsies of patients with active and inactive disease and from non-Crohn's disease patients (non-CD). A validation cohort was used to test the main candidate genes via qPCR in other fat depots and immune cells. RESULTS: We found differences in DNA-methylation and gene expression between ASCs isolated from patients with CD and from non-CD subjects, but we found no differences related to disease activity. Pathway enrichment analysis revealed that oxidative stress and immune response were significantly enriched in active CD and integration analysis identified MAB21L2, a cell fate-determining gene, as the most affected gene in CD. Validation analysis confirmed the elevated gene expression of MAB21L2 in MAT and in adipose tissue macrophages in active CD. We also found a strong association between expression of the calcium channel subunit gene CACNA1H and disease remission, as CACNA1H expression was higher in ASCs and MAT from patients with inactive CD, and correlates negatively with C-reactive protein in peripheral blood mononuclear cells. CONCLUSION: We identified a potential gene signature of CD in ASCs obtained from MAT. Integration analysis highlighted two novel genes demonstrating a negative correlation between promoter DNA methylation and transcription: one linked to ASCs in CD (MAB21L2) and the other (CACNA1H) related to disease remission.

2.
J Crohns Colitis ; 16(10): 1571-1583, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35554517

ABSTRACT

BACKGROUND AND AIMS: Crohn's disease [CD] is associated with complex microbe-host interactions, involving changes in microbial communities, and gut barrier defects, leading to the translocation of microorganisms to surrounding adipose tissue [AT]. We evaluated the presence of beige AT depots in CD and questioned whether succinate and/or bacterial translocation promotes white-to-beige transition in adipocytes. METHODS: Visceral [VAT] and subcutaneous [SAT] AT biopsies, serum and plasma were obtained from patients with active [n = 21] or inactive [n = 12] CD, and from healthy controls [n = 15]. Adipose-derived stem cells [ASCs] and AT macrophages [ATMs] were isolated from VAT biopsies. RESULTS: Plasma succinate levels were significantly higher in patients with active CD than in controls and were intermediate in those with inactive disease. Plasma succinate correlated with the inflammatory marker high-sensitivity C-reactive protein. Expression of the succinate receptor SUCNR1 was higher in VAT, ASCs and ATMs from the active CD group than from the inactive or control groups. Succinate treatment of ASCs elevated the expression of several beige AT markers from controls and from patients with inactive disease, including uncoupling protein-1 [UCP1]. Notably, beige AT markers were prominent in ASCs from patients with active CD. Secretome profiling revealed that ASCs from patients with active disease secrete beige AT-related proteins, and co-culture assays showed that bacteria also trigger the white-to-beige switch of ASCs from patients with CD. Finally, AT depots from patients with CD exhibited a conversion from white to beige AT together with high UCP1 expression, which was corroborated by in situ thermal imaging analysis. CONCLUSIONS: Succinate and bacteria trigger white-to-beige AT transition in CD. Understanding the role of beige AT in CD might aid in the development of therapeutic or diagnostic interventions.


Subject(s)
Crohn Disease , Gastrointestinal Microbiome , Humans , Crohn Disease/metabolism , Succinic Acid/metabolism , Adipose Tissue/metabolism , Adipose Tissue, White/metabolism , Uncoupling Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...