Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 23(20): 11616-11623, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33972979

ABSTRACT

Recently, graphene-based materials have become ubiquitous in electrochemical devices including electrochemical sensors, electrocatalysts, capacitive and membrane desalination and energy storage devices. However, many of the electrochemical properties of graphene (particularly the capacitance and ionic transport) are not yet fully understood. This paper explores the capacitance and ionic transport properties of size dependent graphene (from 100 nm to 1 µm) prepared through the liquid phase exfoliation of graphite in which the size of graphene was finely selected using a multi-step centrifugation technique. Our experiment was then expanded to include basal plane graphene using highly ordered pyrolytic graphite as a model electrode, describing the assumed theoretical graphene capacitance (quoted as 550 F g-1 or 21 µF cm-2) and the electrochemical surface area of the carbon-based materials. This work improves our understanding of graphene electrochemistry (capacitance and ion transport), which should lead to the continuing development of many high-performance electrochemical devices, especially supercapacitors, capacitive desalination and ion-based selective membranes.

2.
Nanoscale Adv ; 3(3): 653-660, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-36133846

ABSTRACT

A new approach using graphene as a conductive binder in electrical supercapacitors has recently been proposed. Graphene shows outstanding properties as a conductive binder, and can be used to replace conductive, additive, and polymer binders. However, graphene follows an EDLC behaviour, which may limit its electrochemical performance. In the process described in this work, we introduced WSe2 nanoflakes as a new approach to using pseudocapacitive materials as binders. The WSe2 nanoflakes were produced through liquid phase exfoliation of bulk WSe2, and the flake size was finely selected using a controlled centrifugation speed. The physical and electrochemical properties of the exfoliated WSe2 flakes were analysed; it was found that the smallest flakes (an average flake size of 106 nm) showed outstanding electrochemical properties, expanding our understanding of transition metal dichalcogenide (TMD) materials, and we were able to demonstrate the applicability of using WSe2 as a binder in supercapacitor electrodes. We also successfully replaced conductive additives and polymer binders with WSe2. The overall performance was improved: capacitance was enhanced by 35%, charge transfer resistance reduced by 73%, and self-discharge potential improved by 9%. This study provides an alternative application of using TMD materials as pseudo capacitive binders, which should lead to the continued development of energy storage technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...