Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 12(5): e0421623, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38563788

ABSTRACT

Antimicrobial resistance (AMR) poses an escalating global public health threat. Canals are essential in Thailand, including the capital city, Bangkok, as agricultural and daily water sources. However, the characteristic and antimicrobial-resistance properties of the bacteria in the urban canals have never been elucidated. This study employed whole genome sequencing to characterize 30 genomes of a causal pathogenic bacteria, Salmonella enterica, isolated from Bangkok canal water between 2016 and 2020. The dominant serotype was Salmonella Agona. In total, 35 AMR genes and 30 chromosomal-mediated gene mutations were identified, in which 21 strains carried both acquired genes and mutations associated with fluoroquinolone resistance. Virulence factors associated with invasion, adhesion, and survival during infection were detected in all study strains. 75.9% of the study stains were multidrug-resistant and all the strains harbored the necessary virulence factors associated with salmonellosis. One strain carried 20 resistance genes, including mcr-3.1, mutations in GyrA, ParC, and ParE, and typhoid toxin-associated genes. Fifteen plasmid replicon types were detected, with Col(pHAD28) being the most common type. Comparative analysis of nine S. Agona from Bangkok and 167 from public databases revealed that specific clonal lineages of S. Agona might have been circulating between canal water and food sources in Thailand and globally. These findings provide insight into potential pathogens in the aquatic ecosystem and support the inclusion of environmental samples into comprehensive AMR surveillance initiatives as part of a One Health approach. This approach aids in comprehending the rise and dissemination of AMR and devising sustainable intervention strategies.IMPORTANCEBangkok is the capital city of Thailand and home to a large canal network that serves the city in various ways. The presence of pathogenic and antimicrobial-resistant Salmonella is alarming and poses a significant public health risk. The present study is the first characterization of the genomic of Salmonella strains from Bangkok canal water. Twenty-two of 29 strains (75.9%) were multidrug-resistant Salmonella and all the strains carried essential virulence factors for pathogenesis. Various plasmid types were identified in these strains, potentially facilitating the horizontal transfer of AMR genes. Additional investigations indicated a potential circulation of S. Agona between canal water and food sources in Thailand. The current study underscores the role of environmental water in an urban city as a reservoir of pathogens and these data obtained can serve as a basis for public health risk assessment and help shape intervention strategies to combat AMR challenges in Thailand.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Virulence Factors , Whole Genome Sequencing , Thailand/epidemiology , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial/genetics , Water Microbiology , Plasmids/genetics , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella enterica/drug effects , Salmonella enterica/classification , Salmonella enterica/pathogenicity , Salmonella/genetics , Salmonella/isolation & purification , Salmonella/classification , Salmonella/drug effects , Microbial Sensitivity Tests , Genomics , Humans , Phylogeny , Salmonella Infections/microbiology , Serogroup
2.
Foodborne Pathog Dis ; 20(9): 405-413, 2023 09.
Article in English | MEDLINE | ID: mdl-37540138

ABSTRACT

Salmonella enterica (S. enterica) is a commensal organism or pathogen causing diseases in animals and humans, as well as widespread in the environment. Antimicrobial resistance (AMR) has increasingly affected both animal and human health and continues to raise public health concerns. A decade ago, it was estimated that the increased use of whole genome sequencing (WGS) combined with sharing of public data would drastically change and improve the surveillance and understanding of Salmonella epidemiology and AMR. This study aimed to evaluate the current usefulness of public WGS data for Salmonella surveillance and to investigate the associations between serovars, antibiotic resistance genes (ARGs), and metadata. Out of 191,306 Salmonella genomes deposited in European Nucleotide Archive and NCBI databases, 47,452 WGS with sufficient minimum metadata (country, year, and source) of S. enterica were retrieved from 116 countries and isolated between 1905 and 2020. For in silico analysis of the WGS data, KmerFinder, SISTR, and ResFinder were used for species, serovars, and AMR identification, respectively. The results showed that the five common isolation sources of S. enterica are human (29.10%), avian (22.50%), environment (11.89%), water (9.33%), and swine (6.62%). The most common ARG profiles for each class of antimicrobials are ß-lactam (blaTEM-1B; 6.78%), fluoroquinolone [(parC[T57S], qnrB19); 0.87%], folate pathway antagonist (sul2; 8.35%), macrolide [mph(A); 0.39%], phenicol (floR; 5.94%), polymyxin B (mcr-1.1; 0.09%), and tetracycline [tet(A); 12.95%]. Our study reports the first overview of ARG profiles in publicly available Salmonella genomes from online databases. All data sets from this study can be searched at Microreact.


Subject(s)
Anti-Bacterial Agents , Salmonella enterica , Humans , Animals , Swine , Anti-Bacterial Agents/pharmacology , Metadata , Drug Resistance, Bacterial/genetics , Salmonella/genetics , Drug Resistance, Multiple, Bacterial/genetics
3.
Int J Microbiol ; 2019: 5086240, 2019.
Article in English | MEDLINE | ID: mdl-31316564

ABSTRACT

Salmonella enterica Serotype 4,[5],12:i:-, a monophasic variant of S. Typhimurium, with high virulence and multidrug resistance is distributed globally causing pathogenicity to both humans and domesticated animals. BOX-A1R-based repetitive extragenic palindromic-PCR (BOX)-PCR proved to be superior to three other repetitive element-based PCR typing methods, namely, enterobacterial repetitive intergenic consensus (ERIC)-, poly-trinucleotide (GTG)5-, and repetitive extragenic palindromic (REP)-PCR (carried out under a single optimized amplification condition), in differentiating genetic relatedness among S. 4,[5],12:i:- isolates from feces of hospitalized patients (n=12) and isolates from minced pork samples of S. 4,[5],12:i:- (n=6), S. Typhimurium (n=6), and Salmonella Serogroup B (n=4) collected from different regions of northern Thailand. Construction of phylogenetic trees from amplicon size patterns allowed allocation of Salmonella isolates into clusters of similar genetic relatedness, with BOX-PCR generating more unique clusters for each serotype than the other three typing methods. BOX-, (GTG)5-, and REP-PCR indicated significant genetic relatedness between S. 4,[5],12:i:- isolates 1 and 9 from hospitalized patients and S. 4,[5],12:i:- isolate en 29 from minced pork, suggesting a possible route of transmission. Thus, BOX-PCR provides a suitable molecular typing method for discriminating genetic relatedness among Salmonella spp. of the same and different serotypes and should be suitable for application in typing and tracking route of transmission in Salmonella outbreaks.

SELECTION OF CITATIONS
SEARCH DETAIL
...