Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 12(3): 833-843, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28117571

ABSTRACT

Aiming to design partial agonists as well as allosteric modulators for the M1 muscarinic acetylcholine (M1AChR) receptor, two different series of bipharmacophoric ligands and their structural analogues were designed and synthesized. The hybrids were composed of the benzyl quinolone carboxylic acid (BQCA)-derived subtype selective allosteric modulator 3 and the orthosteric building block 4-((4,5-dihydroisoxazol-3-yl)oxy)-N,N-dimethylbut-2-yn-1-amine (base of iperoxo) 1 or the endogenous ligand 2-(dimethylamino)ethyl acetate (base of acetylcholine) 2, respectively. The two pharmacophores were linked via alkylene chains of different lengths (C4, C6, C8, and C10). Furthermore, the corresponding structural analogues of 1 and 2 and of modified BQCA 3 with varying alkyl chain length between C2 and C10 were investigated. Fluorescence resonance energy transfer (FRET) measurements in a living single cell system were investigated in order to understand how these compounds interact with a G protein-coupled receptor (GPCR) on a molecular level and how the single moieties contribute to ligand receptor interaction. The characterization of the modified orthosteric ligands indicated that a linker attached to an orthoster rapidly attenuates the receptor response. Linker length elongation increases the receptor response of bitopic ligands, until reaching a maximum, followed by a gradual decrease. The optimal linker length was found to be six methylene groups at the M1AChR. A new conformational change is described that is not of inverse agonistic origin for long linker bitopic ligands and was further investigated by exceptional fragment-based screening approaches.


Subject(s)
Quinolones/chemistry , Receptor, Muscarinic M1/chemistry , Fluorescence Resonance Energy Transfer , Ligands
2.
Nature ; 531(7596): 661-4, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-27007855

ABSTRACT

(ß-)Arrestins are important regulators of G-protein-coupled receptors (GPCRs). They bind to active, phosphorylated GPCRs and thereby shut off 'classical' signalling to G proteins, trigger internalization of GPCRs via interaction with the clathrin machinery and mediate signalling via 'non-classical' pathways. In addition to two visual arrestins that bind to rod and cone photoreceptors (termed arrestin1 and arrestin4), there are only two (non-visual) ß-arrestin proteins (ß-arrestin1 and ß-arrestin2, also termed arrestin2 and arrestin3), which regulate hundreds of different (non-visual) GPCRs. Binding of these proteins to GPCRs usually requires the active form of the receptors plus their phosphorylation by G-protein-coupled receptor kinases (GRKs). The binding of receptors or their carboxy terminus as well as certain truncations induce active conformations of (ß-)arrestins that have recently been solved by X-ray crystallography. Here we investigate both the interaction of ß-arrestin with GPCRs, and the ß-arrestin conformational changes in real time and in living human cells, using a series of fluorescence resonance energy transfer (FRET)-based ß-arrestin2 biosensors. We observe receptor-specific patterns of conformational changes in ß-arrestin2 that occur rapidly after the receptor-ß-arrestin2 interaction. After agonist removal, these changes persist for longer than the direct receptor interaction. Our data indicate a rapid, receptor-type-specific, two-step binding and activation process between GPCRs and ß-arrestins. They further indicate that ß-arrestins remain active after dissociation from receptors, allowing them to remain at the cell surface and presumably signal independently. Thus, GPCRs trigger a rapid, receptor-specific activation/deactivation cycle of ß-arrestins, which permits their active signalling.


Subject(s)
Arrestins/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Arrestins/chemistry , Biosensing Techniques , Cattle , Cell Line , Cell Membrane/metabolism , Cell Survival , Crystallography, X-Ray , Fluorescence Resonance Energy Transfer , Humans , Kinetics , Models, Molecular , Protein Binding , Protein Conformation , Receptors, G-Protein-Coupled/chemistry , Signal Transduction , Substrate Specificity , Time Factors , beta-Arrestins
3.
Mol Pharmacol ; 82(2): 236-45, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22564786

ABSTRACT

Activation of G-protein-coupled receptors is the first step of the signaling cascade triggered by binding of an agonist. Here we compare the activation kinetics of the G(q)-coupled M(3) acetylcholine receptor (M(3)-AChR) with that of a constitutively active mutant receptor (M(3)-AChR-N514Y) using M(3)-AChR constructs that report receptor activation by changes in the fluorescence resonance energy transfer (FRET) signal. We observed a leftward shift in the concentration-dependent FRET response for acetylcholine and carbachol with M(3)-AChR-N514Y. Consistent with this result, at submaximal agonist concentrations, the activation kinetics of M(3)-AChR-N514Y were significantly faster, whereas at maximal agonist concentrations the kinetics of receptor activation were identical. Receptor deactivation was significantly faster with carbachol than with acetylcholine and was significantly delayed by the N514Y mutation. Receptor-G-protein interaction was measured by FRET between M(3)-AChR-yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP)-Gγ(2). Agonist-induced receptor-G-protein coupling was of a time scale similar to that of receptor activation. As observed for receptor deactivation, receptor-G-protein dissociation was slower for acetylcholine than that for carbachol. Acetylcholine-stimulated increases in receptor-G-protein coupling of M(3)-AChR-N514Y reached only 12% of that of M(3)-AChR and thus cannot be kinetically analyzed. G-protein activation was measured using YFP-tagged Gα(q) and CFP-tagged Gγ(2). Activation of G(q) was significantly slower than receptor activation and indistinguishable for the two agonists. However, G(q) deactivation was significantly prolonged for acetylcholine compared with that for carbachol. Consistent with decreased agonist-stimulated coupling to G(q), agonist-stimulated G(q) activation by M(3)-AChR-N514Y was not detected. Taken together, these results indicate that the N514Y mutation produces constitutive activation of M(3)-AChR by decreasing the rate of receptor deactivation, while having minimal effect on receptor activation.


Subject(s)
Point Mutation/genetics , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/metabolism , Acetylcholine/pharmacokinetics , Acetylcholine/pharmacology , Asparagine/genetics , Carbachol/pharmacokinetics , Carbachol/pharmacology , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Protein Binding/genetics , Receptor, Muscarinic M3/agonists , Tyrosine/genetics
4.
Pharmacol Rev ; 64(2): 299-336, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22407612

ABSTRACT

Fluorescence and bioluminescence resonance energy transfer (FRET and BRET) techniques allow the sensitive monitoring of distances between two labels at the nanometer scale. Depending on the placement of the labels, this permits the analysis of conformational changes within a single protein (for example of a receptor) or the monitoring of protein-protein interactions (for example, between receptors and G-protein subunits). Over the past decade, numerous such techniques have been developed to monitor the activation and signaling of G-protein-coupled receptors (GPCRs) in both the purified, reconstituted state and in intact cells. These techniques span the entire spectrum from ligand binding to the receptors down to intracellular second messengers. They allow the determination and the visualization of signaling processes with high temporal and spatial resolution. With these techniques, it has been demonstrated that GPCR signals may show spatial and temporal patterning. In particular, evidence has been provided for spatial compartmentalization of GPCRs and their signals in intact cells and for distinct physiological consequences of such spatial patterning. We review here the FRET and BRET technologies that have been developed for G-protein-coupled receptors and their signaling proteins (G-proteins, effectors) and the concepts that result from such experiments.


Subject(s)
Bioluminescence Resonance Energy Transfer Techniques/methods , Fluorescence Resonance Energy Transfer/methods , Receptors, G-Protein-Coupled/metabolism , Animals , Humans , Ligands , Protein Binding , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...