Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Commun ; 15(1): 2032, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448399

ABSTRACT

Bacterial evolution is affected by mobile genetic elements like phages and conjugative plasmids, offering new adaptive traits while incurring fitness costs. Their infection is affected by the bacterial capsule. Yet, its importance has been difficult to quantify because of the high diversity of confounding mechanisms in bacterial genomes such as anti-viral systems and surface receptor modifications. Swapping capsule loci between Klebsiella pneumoniae strains allowed us to quantify their impact on plasmid and phage infection independently of genetic background. Capsule swaps systematically invert phage susceptibility, revealing serotypes as key determinants of phage infection. Capsule types also influence conjugation efficiency in both donor and recipient cells, a mechanism shaped by capsule volume and conjugative pilus structure. Comparative genomics confirmed that more permissive serotypes in the lab correspond to the strains acquiring more conjugative plasmids in nature. The least capsule-sensitive pili (F-like) are the most frequent in the species' plasmids, and are the only ones associated with both antibiotic resistance and virulence factors, driving the convergence between virulence and antibiotics resistance in the population. These results show how traits of cellular envelopes define slow and fast lanes of infection by mobile genetic elements, with implications for population dynamics and horizontal gene transfer.


Subject(s)
Bacteriophages , Genome, Bacterial , Phenotype , Plasmids/genetics , Serogroup , Bacteriophages/genetics
2.
Microlife ; 4: uqad038, 2023.
Article in English | MEDLINE | ID: mdl-37781688

ABSTRACT

Klebsiella variicola is an emergent human pathogen causing diverse infections, some of which in the urinary tract. However, little is known about the evolution and maintenance of genetic diversity in this species, the molecular mechanisms and their population dynamics. Here, we characterized the emergence of a novel rdar-like (rough and dry) morphotype which is contingent both on the genetic background and the environment. We show that mutations in either the nitrogen assimilation control gene (nac) or the type III fimbriae regulator, mrkH, suffice to generate rdar-like colonies. These morphotypes are primarily selected for the reduced inter-cellular aggregation as a result of MrkH loss-of-function which reduces type 3 fimbriae expression. Additionally, these clones also display increased growth rate and reduced biofilm formation. Direct competitions between rdar and wild type clones show that mutations in mrkH provide large fitness advantages. In artificial urine, the morphotype is under strong negative frequency-dependent selection and can socially exploit wild type strains. An exhaustive search for mrkH mutants in public databases revealed that ca 8% of natural isolates analysed had a truncated mrkH gene many of which were due to insertions of IS elements, including a reported clinical isolate with rdar morphology. These strains were rarely hypermucoid and often isolated from human, mostly from urine and blood. The decreased aggregation of these mutants could have important clinical implications as we hypothesize that such clones could better disperse within the host allowing colonisation of other body sites and potentially leading to systemic infections.

3.
NPJ Biofilms Microbiomes ; 9(1): 53, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37537176

ABSTRACT

Adaptation to one environment can often generate phenotypic and genotypic changes which impact the future ability of an organism to thrive in other environmental conditions. In the context of host-microbe interactions, biofilm formation can increase survival rates in vivo upon exposure to stresses, like the host's immune system or antibiotic therapy. However, how the generic process of adaptation impacts the ability to form biofilm and how it may change through time has seldomly been studied. To do so, we used a previous evolution experiment with three strains of the Klebsiella pneumoniae species complex, in which we specifically did not select for biofilm formation. We observed that changes in the ability to form biofilm happened very fast at first and afterwards reverted to ancestral levels in many populations. Biofilm changes were associated to changes in population yield and surface polysaccharide production. Genotypically, mutations in the tip adhesin of type III fimbriae (mrkD) or the fim switch of type I fimbriae were shaped by nutrient availability during evolution, and their impact on biofilm formation was dependent on capsule production. Analyses of natural isolates revealed similar mutations in mrkD, suggesting that such mutations also play an important role in adaptation outside the laboratory. Our work reveals that the latent evolution of biofilm formation, and its temporal dynamics, depend on nutrient availability, the genetic background and other intertwined phenotypic and genotypic changes. Ultimately, it suggests that small differences in the environment can alter an organism's fate in more complex niches like the host.


Subject(s)
Adhesins, Bacterial , Biofilms , Fimbriae, Bacterial/genetics , Anti-Bacterial Agents , Genetic Background
4.
Nat Commun ; 13(1): 4751, 2022 08 13.
Article in English | MEDLINE | ID: mdl-35963864

ABSTRACT

The extracellular capsule is a major virulence factor, but its ubiquity in free-living bacteria with large environmental breadths suggests that it shapes adaptation to novel niches. Yet, how it does so, remains unexplored. Here, we evolve three Klebsiella strains and their capsule mutants in parallel. Their comparison reveals different phenotypic and genotypic evolutionary changes that alter virulence-associated traits. Non-capsulated populations accumulate mutations that reduce exopolysaccharide production and increase biofilm formation and yield, whereas most capsulated populations become hypermucoviscous, a signature of hypervirulence. Hence, adaptation to novel environments primarily occurs by fine-tuning expression of the capsular locus. The same evolutionary conditions selecting for mutations in the capsular gene wzc leading to hypermucoviscosity also result in increased susceptibility to antibiotics by mutations in the ramA regulon. This implies that general adaptive processes outside the host can affect capsule evolution and its role in virulence and infection outcomes may be a by-product of such adaptation.


Subject(s)
Acclimatization , Genotype , Mutation , Phenotype , Virulence/genetics
5.
Antimicrob Agents Chemother ; 56(3): 1376-81, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22214774

ABSTRACT

We investigated the efficiency of the cephamycin cefoxitin as an alternative to carbapenems for the treatment of urinary tract infections (UTIs) due to Escherichia coli producing CTX-M-type extended-spectrum ß-lactamases. The susceptible, UTI-inducing E. coli CFT073-RR strain and its transconjugant CFT073-RR Tc (pbla(CTX-M-15)), harboring a bla(CTX-M-15) carrying-plasmid, were used for all experiments. MICs of cefoxitin (FOX), ceftriaxone (CRO), imipenem (IMP), and ertapenem (ETP) for CFT073-RR and CFT073-RR Tc (pbla(CTX-M-15)) were 4 and 4, 0.125 and 512, 0.5 and 0.5, and 0.016 and 0.032 µg/ml, respectively. Bactericidal activity was similarly achieved in vitro against the two strains after 3 h of exposure to concentrations of FOX, IMI, and ETP that were 2 times the MIC, whereas CRO was not bactericidal against CFT073-RR Tc (pbla(CTX-M-15)). The frequencies of spontaneous mutants of the 2 strains were not higher for FOX than for IMP or ETP. In the murine model of UTIs, mice infected for 5 days were treated over 24 h. Therapeutic regimens in mice (200 mg/kg of body weight every 3 h or 4 h for FOX, 70 mg/kg every 6 h for CRO, 100 mg/kg every 2 h for IMP, and 100 mg/kg every 4 h for ETP) were chosen in order to reproduce the percentage of time that free-drug concentrations above the MIC are obtained in humans with standard regimens. All antibiotic regimens produced a significant reduction in bacterial counts (greater than 2 log(10) CFU) in kidneys and bladders for both strains (P < 0.001) without selecting resistant mutants in vivo, but the reduction obtained with CRO against CFT073-RR Tc (pbla(CTX-M-15)) in kidneys was significantly lower than that obtained with FOX. In conclusion, FOX appears to be an effective therapeutic alternative to carbapenems for the treatment of UTIs due to CTX-M-producing E. coli.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Carbapenems/therapeutic use , Cefoxitin/therapeutic use , Escherichia coli Infections/drug therapy , Escherichia coli/genetics , Urinary Tract Infections/drug therapy , beta-Lactamases/metabolism , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Bacterial Load/drug effects , Carbapenems/administration & dosage , Carbapenems/pharmacology , Cefoxitin/administration & dosage , Cefoxitin/pharmacology , Ceftriaxone/administration & dosage , Ceftriaxone/pharmacology , Ceftriaxone/therapeutic use , Conjugation, Genetic , Disease Models, Animal , Drug Administration Schedule , Ertapenem , Escherichia coli/drug effects , Escherichia coli Infections/microbiology , Female , Humans , Imipenem/administration & dosage , Imipenem/pharmacology , Imipenem/therapeutic use , Kidney/drug effects , Kidney/microbiology , Mice , Microbial Sensitivity Tests , Mutation Rate , Plasmids , Urinary Bladder/drug effects , Urinary Bladder/microbiology , Urinary Tract Infections/microbiology , beta-Lactamases/genetics , beta-Lactams/administration & dosage , beta-Lactams/pharmacology , beta-Lactams/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...