Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Epilepsy Res ; 108(10): 1853-63, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25304920

ABSTRACT

The 5-hydroxytryptamine-1A (5-HT1A) receptors are known to be involved in the inhibition of seizures in epilepsy. Moreover, studies propose a role for the 5-HT1A receptor in memory function; it is believed that the higher density of this receptor in the hippocampus plays an important role in its regulation. Positron emission tomography (PET) studies in patients with mesial temporal lobe epilepsy (mTLE) have demonstrated that a decrease in 5-HT1A receptor binding in temporal regions may play a role in memory impairment. The evidences lead us to speculate whether this decrease in receptor binding is associated with a reduced receptor number or if the functionality of the 5-HT1A receptor-induced G-protein activation and/or the second messenger cascade is modified. The purpose of the present study is to determine 5-HT1A receptor-induced G-protein functional activation by 8-OH-DPAT-stimulated [(35)S]GTPγS binding assay in hippocampal tissue of surgical patients with mTLE. We correlate functional activity with epilepsy history and neuropsychological assessment of memory. We found that maximum functional activation stimulation values (Emax) of [(35)S]GTPγS binding were significantly increased in mTLE group when compared to autopsy samples. Furthermore, significant correlations were found: (1) positive coefficients between the Emax with the age of patient and frequency of seizures; (2) negative coefficients between the Emax and working memory, immediate recall and delayed recall memory tasks. Our data suggest that the epileptic hippocampus of patients with mTLE presents an increase in 5-HT1A receptor-induced G-protein functional activation, and that this altered activity is related to age and seizure frequency, as well as to memory consolidation deficit.


Subject(s)
Epilepsy, Temporal Lobe/physiopathology , GTP-Binding Proteins/metabolism , Hippocampus/metabolism , Memory Disorders/physiopathology , Receptor, Serotonin, 5-HT1A/metabolism , Adult , Aged , Aging/metabolism , Epilepsy, Temporal Lobe/surgery , Female , Humans , Male , Mental Recall , Middle Aged , Neuropsychological Tests , Severity of Illness Index , Young Adult
2.
Psychopharmacology (Berl) ; 212(4): 475-84, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20689940

ABSTRACT

RATIONALE: Accumulating evidence for the presence of GABA(A) ρ receptors within the amygdala which differ from other members of the GABA(A) receptor family in both subunit composition and functional properties has been recently obtained. OBJECTIVES: This work was conducted to study whether GABA(A) ρ receptors may have a putative role in the amygdaloid modulation of fear and anxiety. RESULTS: It was found that the bilateral intra-amygdaloid administration (6-240 pmol/side) of (1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid, a selective GABA(A) ρ receptor antagonist, reduced dose-dependently the exploration of the open arms of the elevated plus-maze without affecting locomotion and increased the plasma levels of corticosterone. In contrast, bicuculline in the dose range used (1.8-60 pmol/side) induced seizures, but had no effects on the exploration of the maze. CONCLUSIONS: It is suggested that GABA(A) ρ receptors may have a role in the amygdaloid modulation of fear and anxiety.


Subject(s)
Amygdala/metabolism , Anxiety/metabolism , Behavior, Animal , Fear , Receptors, GABA-A/metabolism , Amygdala/drug effects , Animals , Behavior, Animal/drug effects , Bicuculline/administration & dosage , Bicuculline/adverse effects , Corticosterone/blood , Dose-Response Relationship, Drug , Exploratory Behavior/drug effects , Fear/drug effects , GABA-A Receptor Antagonists/administration & dosage , GABA-A Receptor Antagonists/adverse effects , Male , Microdialysis , Motor Activity/drug effects , Phosphinic Acids/administration & dosage , Pyridines/administration & dosage , Rats , Rats, Wistar , Receptors, GABA-A/drug effects , Seizures/chemically induced
3.
Eur J Neurosci ; 26(12): 3614-30, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18088282

ABSTRACT

The amygdala plays a key role in fear and anxiety. The intercalated islands are clusters of glutamate-responsive GABAergic neurons rich in cholecystokinin (CCK)-2 receptors which control the trafficking of nerve impulses from the cerebral cortex to the central nucleus of amygdala. In this study, the nature of the CCK-glutamate-GABA interactions within the rat rostral amygdala, and their relevance for anxiety, were studied. CCK/gastrin-like immunoreactive nerve terminals were found to be mainly restricted to the paracapsular intercalated islands and the rostrolateral part of the main intercalated island. Behaviourally, the bilateral microinjection of CCK-4 (0.043-4.3 pmol/side) or CCK-8S (4.3 pmol/side) into the rostrolateral amygdala reduced the open-arm exploration in the elevated plus-maze without affecting locomotion. In contrast, neither CCK-4 nor CCK-8S (0.043-4.3 pmol/side) had any effects in the shock-probe burying test as compared with their saline-treated controls. Biochemically, CCK-4 (0.3 and 1.5 microm), unlike CCK-8S, enhanced significantly the K(+)-stimulated release of [(3)H]GABA from amygdala slices. These effects were fully prevented by prior superfusion of the slices with either the selective CCK-2 receptor antagonist CR2945 (3 microm), or 6,7-dinitroquinoxaline-2,3(1H,4H)-dione (DNQX), 10 microm, a glutamatergic (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptor antagonist. It is suggested that CCK modulates glutamate-GABA mechanisms by acting on CCK-2 receptors via volume transmission occurring at the level of the basolateral amygdaloid nucleus and/or by synaptic or perisynaptic volume transmission in the region of the rostrolateral main and paracapsular intercalated islands, resulting in subsequent disinhibition of the central amygdaloid nucleus and anxiety or panic-like behaviour.


Subject(s)
Amygdala/metabolism , Anxiety/physiopathology , Gastrins/metabolism , Nerve Endings/physiopathology , Nerve Net/physiopathology , Receptor, Cholecystokinin B/metabolism , Amygdala/drug effects , Animals , Anxiety/chemically induced , Anxiety/psychology , Avoidance Learning/drug effects , Electroshock , Excitatory Amino Acid Antagonists/pharmacology , In Vitro Techniques , Male , Maze Learning/drug effects , Microinjections , Motor Activity/drug effects , Quinoxalines/pharmacology , Rats , Rats, Wistar , Receptors, Dopamine D1/metabolism , Sincalide/administration & dosage , Sincalide/analogs & derivatives , Sincalide/pharmacology , Tetragastrin/administration & dosage , Tetragastrin/antagonists & inhibitors , Tetragastrin/pharmacology , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...