Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 133(24)2023 12 15.
Article in English | MEDLINE | ID: mdl-38099494

ABSTRACT

The suppression mechanism of Tregs remains an intensely investigated topic. As our focus has shifted toward a model centered on indirect inhibition of DCs, a universally applicable effector mechanism controlled by the transcription factor forkhead box P3 (Foxp3) expression has not been found. Here, we report that Foxp3 blocked the transcription of ER Ca2+-release channel ryanodine receptor 2 (RyR2). Reduced RyR2 shut down basal Ca2+ oscillation in Tregs, which reduced m-calpain activities that are needed for T cells to disengage from DCs, suggesting a persistent blockage of DC antigen presentation. RyR2 deficiency rendered the CD4+ T cell pool immune suppressive and caused it to behave in the same manner as Foxp3+ Tregs in viral infection, asthma, hypersensitivity, colitis, and tumor development. In the absence of Foxp3, Ryr2-deficient CD4+ T cells rescued the systemic autoimmunity associated with scurfy mice. Therefore, Foxp3-mediated Ca2+ signaling inhibition may be a central effector mechanism of Treg immune suppression.


Subject(s)
Ryanodine Receptor Calcium Release Channel , T-Lymphocytes, Regulatory , Animals , Mice , Calcium/metabolism , CD4-Positive T-Lymphocytes , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism
2.
Pharmacology ; 105(1-2): 9-18, 2020.
Article in English | MEDLINE | ID: mdl-31743904

ABSTRACT

BACKGROUND: Ulcerative colitis (UC) is an inflammatory bowel disease. Its onset is typically gradual, usually followed by periods of spontaneous remission and subsequent relapses. Grape seed polyphenols (GSP), a natural product extracted from grape seeds, have strong anti-inflammatory functions. OBJECTIVES: In this study, we investigated whether GSP has an inhibitory effect on UC and its related mechanism or not. METHODS: We induced UC by 2.5% dextran sulfate sodium (DSS) and GSP at different doses (500 and 750 mg/kg body weight per day) was administrated to the mice by gavage. Body weight, diarrhea, and bloody stool were recorded every day to evaluate disease activity index. Hemotoxylin-eosin staining and immunohistochemical staining were used to identify the histological damages and inflammatory infiltration in colon tissues. Real-time polymerase chain reaction was used to evaluate mRNA expression of interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α and the expression of phosphorylated-signal transducer and activator of transcription 3 (STAT3) and STAT3 were assessed by western blot. The immunofluorescent assay was used to evaluate the apoptosis of intestinal epithelial cells (IECs). RESULTS: GSP could alleviate the loss of body weight, diarrhea, bloody stool, the mucosal damage, and inflammatory infiltration. GSP could also downregulate the mRNA expression of inflammatory cytokines IL-6, IL-1ß, and TNF-α as well as the phosphorylation of STAT3 and ameliorate the apoptosis of IECs. CONCLUSIONS: Our study suggests that GSP has protective effects against DSS-induced UC, which may through suppression of inflammation and apoptosis.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Colitis, Ulcerative/drug therapy , Polyphenols/therapeutic use , Vitis , Animals , Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/immunology , Colitis, Ulcerative/metabolism , Colon/drug effects , Colon/pathology , Cytokines/genetics , Dextran Sulfate , Female , Mice, Inbred C57BL , Polyphenols/pharmacology , RNA, Messenger/metabolism , STAT3 Transcription Factor/metabolism , Seeds
SELECTION OF CITATIONS
SEARCH DETAIL
...