Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 12: 444, 2013 Dec 09.
Article in English | MEDLINE | ID: mdl-24321092

ABSTRACT

BACKGROUND: The transmission of malaria in Indonesia is highly heterogeneous spatially and seasonally. Anti-malaria antibody responses can help characterize this variation. In the present study antibody responses to Plasmodium falciparum MSP-1 and AMA-1 were measured to assess the transmission intensity in a hypo-endemic area of Purworejo and a meso-endemic area of Lampung during low and high transmission seasons. METHODS: Filter-paper blood spot samples collected from Purworejo and Lampung by cross-sectional survey during high and low transmission season were stored at -20°C. Indirect ELISA assays were carried out using PfMSP1-19 and PfAMA1 antigens. A positivity threshold was determined by samples from local unexposed individuals, and the differences in seroprevalence, antibody level and correlation between antibody level and age in each site were statistically analysed. RESULTS: Prevalence of antibodies to either PfMSP1-19 or PfAMA1 was higher in Lampung than in Purworejo in both the low (51.3 vs 25.0%) and high transmission season (53.9 vs 37.5%). The magnitude of antibody responses was associated with increasing age in both sites and was higher in Lampung. Age-adjusted seroconversion rates showed an approximately ten-fold difference between Lampung and Purowejo. Two different seroconversion rates were estimated for Lampung suggesting behaviour-related differences in exposure. In both settings antibody responses to PfMSP1-19 were significantly lower in the low season compared to the high season. CONCLUSION: Seasonal changes may be detectable by changes in antibody responses. This is particularly apparent in lower transmission settings and with less immunogenic antigens (in this case PfMSP1-19). Examination of antibody levels rather than seroprevalence is likely to be a more sensitive indicator of changes in transmission. These data suggest that sero-epidemiological analysis may have a role in assessing short-term changes in exposure especially in low or seasonal transmission settings.


Subject(s)
Antibodies, Protozoan/blood , Malaria, Falciparum/epidemiology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Adolescent , Adult , Aged , Antibodies, Protozoan/biosynthesis , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay , Female , Humans , Indonesia/epidemiology , Infant , Malaria, Falciparum/transmission , Male , Membrane Proteins/immunology , Merozoite Surface Protein 1/immunology , Middle Aged , Protozoan Proteins/immunology , Seasons , Seroepidemiologic Studies , Young Adult
2.
Malar J ; 12: 21, 2013 Jan 17.
Article in English | MEDLINE | ID: mdl-23327665

ABSTRACT

BACKGROUND: As malaria transmission intensity approaches zero, measuring it becomes progressively more difficult and inefficient because parasite-positive individuals are hard to detect. This situation may arise shortly before achieving local elimination, or during surveillance post-elimination to prevent reintroduction. Antibody responses against the parasite last longer than the infections themselves. This "footprint" of infection may thus be used for assessing transmission intensity. A statistical approach is presented for measuring the seroconversion rate (SCR), a correlate of the force of infection, from individual-level longitudinal data on antibody titres in an area of low Plasmodium falciparum transmission. METHODS: Blood samples were collected from 160 Indonesian schoolchildren every month for six months. Titres of antibodies against AMA-1 and MSP-1(19) antigens of P. falciparum were measured using ELISA. The distribution of antibody titres among seronegative and -positive individuals, respectively, was estimated by comparing the titres from the study data (a mixture of both seropositive and -negative individuals) with titres from a (unexposed) negative control group of Indonesian individuals. Two Markov-Chain models for the transition of individuals between serological states were fitted to individual anti-PfAMA-1 or anti-PfMSP-1 titre time series using Bayesian Markov-Chain-Monte-Carlo (MCMC). This yielded estimates of SCR as well as of the duration of seropositivity. RESULTS: A posterior median SCR of 0.02 (Pf AMA-1) and 0.09 (PfMSP-1) person(-1) year(-1) was estimated, with credible intervals ranging from 1E-4 to 0.2 person(-1) year(-1). This level of transmission intensity is at the lower range of what can reliably be measured with the present study size. A Bayesian test for seroconversion of an individual between two observations is presented and used to identify the subjects who have most likely experienced an infection. Furthermore, the theoretical limits of measuring transmission intensity, and how these depend on duration and size of a study as well as on transmission intensity itself, is illustrated. CONCLUSIONS: This analysis shows that it is possible to measure SCR's from individual-level longitudinal data on antibody titres. In addition, individual seroconversion events can be identified, which can be useful in assessing interruption of transmission. Analyses of further serological datasets using the present method are required to improve and validate it. This includes measurement of the duration of antibody responses, how it depends on host age or cumulative exposure, or on the particular antigen used.


Subject(s)
Antibodies, Protozoan/blood , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Antigens, Protozoan/immunology , Child , Cross-Sectional Studies , Enzyme-Linked Immunosorbent Assay , Female , Humans , Incidence , Indonesia/epidemiology , Male , Membrane Proteins/immunology , Merozoite Surface Protein 1/immunology , Protozoan Proteins/immunology , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...