Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(24): 21766-21774, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31185565

ABSTRACT

Organic solar cells are thought to suffer from poor thermal stability of the active layer nanostructure, a common belief that is based on the extensive work that has been carried out on fullerene-based systems. We show that a widely studied non-fullerene acceptor, the indacenodithienothiophene-based acceptor ITIC, crystallizes in a profoundly different way as compared to fullerenes. Although fullerenes are frozen below the glass-transition temperature Tg of the photovoltaic blend, ITIC can undergo a glass-crystal transition considerably below its high Tg of ∼180 °C. Nanoscopic crystallites of a low-temperature polymorph are able to form through a diffusion-limited crystallization process. The resulting fine-grained nanostructure does not evolve further with time and hence is characterized by a high degree of thermal stability. Instead, above Tg, the low temperature polymorph melts, and micrometer-sized crystals of a high-temperature polymorph develop, enabled by more rapid diffusion and hence long-range mass transport. This leads to the same detrimental decrease in photovoltaic performance that is known to occur also in the case of fullerene-based blends. Besides explaining the superior thermal stability of non-fullerene blends at relatively high temperatures, our work introduces a new rationale for the design of bulk heterojunctions that is not based on the selection of high- Tg materials per se but diffusion-limited crystallization. The planar structure of ITIC and potentially other non-fullerene acceptors readily facilitates the desired glass-crystal transition, which constitutes a significant advantage over fullerenes, and may pave the way for truly stable organic solar cells.

2.
Nat Mater ; 18(5): 489-495, 2019 05.
Article in English | MEDLINE | ID: mdl-30936481

ABSTRACT

Hydrogen-air mixtures are highly flammable. Hydrogen sensors are therefore of paramount importance for timely leak detection during handling. However, existing solutions do not meet the stringent performance targets set by stakeholders, while deactivation due to poisoning, for example by carbon monoxide, is a widely unsolved problem. Here we present a plasmonic metal-polymer hybrid nanomaterial concept, where the polymer coating reduces the apparent activation energy for hydrogen transport into and out of the plasmonic nanoparticles, while deactivation resistance is provided via a tailored tandem polymer membrane. In concert with an optimized volume-to-surface ratio of the signal transducer uniquely offered by nanoparticles, this enables subsecond sensor response times. Simultaneously, hydrogen sorption hysteresis is suppressed, sensor limit of detection is enhanced, and sensor operation in demanding chemical environments is enabled, without signs of long-term deactivation. In a wider perspective, our work suggests strategies for next-generation optical gas sensors with functionalities optimized by hybrid material engineering.

3.
Anal Chem ; 89(4): 2575-2582, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28194946

ABSTRACT

Organic semiconductors are key materials for the next generation thin film electronic devices like field-effect transistors, light-emitting diodes, and solar cells. Accurate thermal analysis is essential for the fundamental understanding of these materials, for device design, stability studies, and quality control because the desired nanostructures are often far from thermodynamic equilibrium and therefore tend to evolve with time and temperature. However, classical experimental techniques are insufficient because the active layer of most organoelectronic device architectures is typically only on the order of a hundred nanometers or less. Scrutinizing the thermal properties in this size range is, however, critical because strong deviations of the thermal properties from bulk values due to confinement effects and pronounced influence of the substrate become significant. Here, we introduce plasmonic nanospectroscopy as an experimental approach to scrutinize the thickness dependence of the thermal stability of semicrystalline, liquid-crystalline, and glassy organic semiconductor thin films down to the sub-100 nm film thickness regime. In summary, we find a pronounced thickness dependence of the glass transition temperature of ternary polymer/fullerene blend thin films and their constituents, which can be resolved with exceptional precision by the plasmonic nanospectroscopy method, which relies on remarkably simple instrumentation.

4.
ACS Nano ; 10(2): 2871-9, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26828308

ABSTRACT

Mixing different elements at the nanoscale to obtain alloy nanostructures with fine-tuned physical and chemical properties offers appealing opportunities for nanotechnology and nanoscience. However, despite widespread successful application of alloy nanoparticles made by colloidal synthesis in heterogeneous catalysis, nanoalloy systems have been used very rarely in solid-state devices and nanoplasmonics-related applications. One reason is that such applications require integration in arrays on a surface with compelling demands on nanoparticle arrangement, uniformity in surface coverage, and optimization of the surface density. These cannot be fulfilled even using state-of-the-art self-assembly strategies of colloids. As a solution, we present here a generic bottom-up nanolithography-compatible fabrication approach for large-area arrays of alloy nanoparticles on surfaces. To illustrate the concept, we focus on Au-based binary and ternary alloy systems with Ag, Cu, and Pd, due to their high relevance for nanoplasmonics and complete miscibility, and characterize their optical properties. Moreover, as an example for the relevance of the obtained materials for integration in devices, we demonstrate the superior and hysteresis-free plasmonic hydrogen-sensing performance of the AuPd alloy nanoparticle system.

5.
Nat Mater ; 14(12): 1236-44, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26343912

ABSTRACT

Physicochemical properties of nanoparticles may depend on their size and shape and are traditionally assessed in ensemble-level experiments, which accordingly may be plagued by averaging effects. These effects can be eliminated in single-nanoparticle experiments. Using plasmonic nanospectroscopy, we present a comprehensive study of hydride formation thermodynamics in individual Pd nanocrystals of different size and shape, and find corresponding enthalpies and entropies to be nearly size- and shape-independent. The hysteresis observed is significantly wider than in bulk, with details depending on the specifics of individual nanoparticles. Generally, the absorption branch of the hysteresis loop is size-dependent in the sub-30 nm regime, whereas desorption is size- and shape-independent. The former is consistent with a coherent phase transition during hydride formation, influenced kinetically by the specifics of nucleation, whereas the latter implies that hydride decomposition either occurs incoherently or via different kinetic pathways.


Subject(s)
Hydrogen/chemistry , Nanoparticles , Palladium/chemistry , Thermodynamics , Kinetics , Spectrum Analysis/methods
6.
Anal Chem ; 87(20): 10161-5, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26413906

ABSTRACT

In the context of carbon capture and storage (CCS), micro- and mesoporous polymers have received significant attention due to their ability to selectively adsorb and separate CO2 from gas streams. The performance of such materials is critically dependent on the isosteric heat of adsorption (Qst) of CO2 directly related to the interaction strength between CO2 and the adsorbent. Here, we show using the microporous polymer PIM-1 as a model system that its Qst can be conveniently determined by in situ UV-vis optical transmission spectroscopy directly applied on the adsorbent or, with higher resolution, by indirect nanoplasmonic sensing based on localized surface plasmon resonance in metal nanoparticles. Taken all together, this study provides a general blueprint for efficient optical screening of micro- and mesoporous polymeric materials for CCS in terms of their CO2 adsorption energetics and kinetics.


Subject(s)
Carbon Dioxide/chemistry , Nanotechnology , Polymers/chemistry , Surface Plasmon Resonance , Ultraviolet Rays , Adsorption , Particle Size , Porosity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...