Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cancer Imaging ; 24(1): 3, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167551

ABSTRACT

BACKGROUND: Gliomas present a significant economic burden and patient management challenge. The 2021 WHO classification incorporates molecular parameters, which guide treatment decisions. However, acquiring these molecular data involves invasive biopsies, prompting a need for non-invasive diagnostic methods. This study aims to assess the potential of Visually AcceSAble Rembrandt Images (VASARI) MRI features to predict glioma characteristics such as grade, IDH mutation, and MGMT methylation status. METHODS: This study enrolled 107 glioma patients treated between 2017 and 2022, meeting specific criteria including the absence of prior chemotherapy/radiation therapy, and the presence of molecular and MRI data. Images were assessed using the 27 VASARI MRI features by two blinded radiologists. Pathological and molecular assessments were conducted according to WHO 2021 CNS Tumor classification. Cross-validation Least Absolute Shrinkage and Selection Operator (CV-LASSO) logistic regression was applied for statistical analysis to identify significant VASARI features in determining glioma grade, IDH mutation, and MGMT methylation status. RESULTS: The study demonstrated substantial observer agreement in VASARI feature evaluation (inter- and intra-observer κ = 0.714 - 0.831 and 0.910, respectively). Patient imaging characteristics varied significantly with glioma grade, IDH mutation, and MGMT methylation. A predictive model was established using VASARI features for glioma grade prediction, exhibiting an AUC of 0.995 (95% CI = 0.986 - 0.998), 100% sensitivity, and 92.86% specificity. IDH mutation status was predicted with AUC 0.930 (95% CI = 0.882 - 0.977), and improved slightly to 0.933 with 'age-at-diagnosis' added. A model predicting MGMT methylation had a satisfactory performance (AUC 0.757, 95% CI = 0.645 - 0.868), improving to 0.791 when 'age-at-diagnosis' was added. CONCLUSIONS: The T1/FLAIR ratio, enhancement quality, hemorrhage, and proportion enhancing predict glioma grade with excellent accuracy. The proportion enhancing, thickness of enhancing margin, and T1/FLAIR ratio are significant predictors for IDH mutation status. Lastly, MGMT methylation is related to the longest diameter of the lesion, edema crossing the midline, and the proportion of the non-enhancing lesion. VASARI MRI features offer non-invasive and accurate predictive models for glioma grade, IDH mutation, and MGMT methylation status, enhancing glioma patient management.


Subject(s)
Brain Neoplasms , Glioma , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Mutation , Glioma/diagnostic imaging , Glioma/genetics , Glioma/pathology , Magnetic Resonance Imaging/methods , Retrospective Studies
2.
Skin Res Technol ; 29(11): e13505, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38009020

ABSTRACT

BACKGROUND: Pigmented skin lesions (PSLs) pose medical and esthetic challenges for those affected. PSLs can cause skin cancers, particularly melanoma, which can be life-threatening. Detecting and treating melanoma early can reduce mortality rates. Dermoscopic imaging offers a noninvasive and cost-effective technique for examining PSLs. However, the lack of standardized colors, image capture settings, and artifacts makes accurate analysis challenging. Computer-aided diagnosis (CAD) using deep learning models, such as convolutional neural networks (CNNs), has shown promise by automatically extracting features from medical images. Nevertheless, enhancing the CNN models' performance remains challenging, notably concerning sensitivity. MATERIALS AND METHODS: In this study, we aim to enhance the classification performance of selected pretrained CNNs. We use the 2019 ISIC dataset, which presents eight disease classes. To achieve this goal, two methods are applied: resolution of the dataset imbalance challenge through augmentation and optimization of the training hyperparameters via Bayesian tuning. RESULTS: The performance improvement was observed for all tested pretrained CNNs. The Inception-V3 model achieved the best performance compared to similar results, with an accuracy of 96.40% and an AUC of 0.98. CONCLUSION: According to the study, classification performance was significantly enhanced by augmentation and Bayesian hyperparameter tuning.


Subject(s)
Melanoma , Pigmentation Disorders , Skin Neoplasms , Humans , Bayes Theorem , Skin Neoplasms/pathology , Melanoma/pathology , Diagnosis, Computer-Assisted/methods , Neural Networks, Computer
3.
J Med Signals Sens ; 12(2): 145-154, 2022.
Article in English | MEDLINE | ID: mdl-35755978

ABSTRACT

When an epileptic seizure occurs, the neuron's activity of the brain is dynamically changed, which affects the connectivity between brain regions. The connectivity of each brain region can be quantified by electroencephalography (EEG) coherence, which measures the statistical correlation between electrodes spatially separated on the scalp. Previous studies conducted a coherence analysis of all EEG electrodes covering all parts of the brain. However, in an epileptic condition, seizures occur in a specific region of the brain then spreading to other areas. Therefore, this study applies an energy-based channel selection process to determine the coherence analysis in the most active brain regions during the seizure. This paper presents a quantitative analysis of inter- and intrahemispheric coherence in epileptic EEG signals and the correlation with the channel activity to glean insights about brain area connectivity changes during epileptic seizures. The EEG signals are obtained from ten patients' data from the CHB-MIT dataset. Pair-wise electrode spectral coherence is calculated in the full band and five sub-bands of EEG signals. The channel activity level is determined by calculating the energy of each channel in all patients. The EEG coherence observation in the preictal (Cohpre ) and ictal (Cohictal ) conditions showed a significant decrease of Cohictal in the most active channel, especially in the lower EEG sub-bands. This finding indicates that there is a strong correlation between the decrease of mean spectral coherence and channel activity. The decrease of coherence in epileptic conditions (Cohictal

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 1760-1763, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29060228

ABSTRACT

Diabetic Retinopathy (DR) is a disease which affect the vision ability. The observation by an ophthalmologist usually conducted by analyzing the retinal images of the patient which are marked by some DR features. However some misdiagnosis are usually found due to human error. Here, a deep learning-based low-cost embedded system is established to assist the doctor for grading the severity of the DR from the retinal images. A compact deep learning algorithm named Deep-DR-Net which fits on a small embedded board is afterwards proposed for such purposes. In the heart of Deep-DR-Net, a cascaded encoder-classifier network is arranged using residual style for ensuring the small model size. The usage of different types of convolutional layers subsequently guarantees the features richness of the network for differentiating the grade of the DR. Experimental results show the capability of the proposed system for detecting the existence as well as grading the severity of the DR symptomps.


Subject(s)
Diabetic Retinopathy , Algorithms , Humans , Machine Learning
5.
Med Biol Eng Comput ; 49(6): 693-700, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21271293

ABSTRACT

Diabetic retinopathy (DR) is a sight threatening complication due to diabetes mellitus that affects the retina. In this article, a computerised DR grading system, which digitally analyses retinal fundus image, is used to measure foveal avascular zone. A v-fold cross-validation method is applied to the FINDeRS database to evaluate the performance of the DR system. It is shown that the system achieved sensitivity of >84%, specificity of >97% and accuracy of >95% for all DR stages. At high values of sensitivity (>95%), specificity (>97%) and accuracy (>98%) obtained for No DR and severe NPDR/PDR stages, the computerised DR grading system is suitable for early detection of DR and for effective treatment of severe cases.


Subject(s)
Diabetic Retinopathy/diagnosis , Image Interpretation, Computer-Assisted/methods , Severity of Illness Index , Algorithms , Disease Progression , Fundus Oculi , Humans , Sensitivity and Specificity
6.
Comput Biol Med ; 40(7): 657-64, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20573343

ABSTRACT

Monitoring FAZ area enlargement enables physicians to monitor progression of the DR. At present, it is difficult to discern the FAZ area and to measure its enlargement in an objective manner using digital fundus images. A semi-automated approach for determination of FAZ using color images has been developed. Here, a binary map of retinal blood vessels is computer generated from the digital fundus image to determine vessel ends and pathologies surrounding FAZ for area analysis. The proposed method is found to achieve accuracies from 66.67% to 98.69% compared to accuracies of 18.13-95.07% obtained by manual segmentation of FAZ regions from digital fundus images.


Subject(s)
Algorithms , Diabetic Retinopathy/diagnosis , Fovea Centralis/pathology , Fundus Oculi , Image Processing, Computer-Assisted/methods , Photography/methods , Diabetic Retinopathy/pathology , Disease Progression , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...