Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Q J R Meteorol Soc ; 148(748): 3343-3365, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36636229

ABSTRACT

Profiles of eddy momentum flux divergence are calculated as the residual in the momentum budget constructed from airborne circular dropsonde arrays ( ∼ 220 km) for 13 days during the EUREC 4 A/ATOMIC field campaign. The observed dynamical forcing averaged over all flights agrees broadly with European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS) forecasts. In the direction of the flow, a mean flux divergence (friction) exists over a 1.5-km deep Ekman layer, and a mean flux convergence (acceleration) is present near cloud tops. The friction is countergradient between 1 and 1.5 km, where vertical wind shear exceeds the observed thermal wind. From the frictional profile, a 10-m momentum flux of ∼ 0.1 N · m - 2 is derived, in line with Saildrone turbulence measurements. A momentum flux divergence in the cross-wind direction is pronounced near the surface and acts to veer the wind, opposing the friction-induced cross-isobaric wind turning. Weaker friction and upper-level acceleration of easterly flow are observed when stronger winds and more vigorous convection prevail. Turbulence measurements on board the SAFIRE ATR-42 aircraft and the Uncrewed Aircraft System (UAS) RAAVEN reveal pronounced spatial variability of momentum fluxes, with a non-negligible contribution of mesoscales (5-30 km). The findings highlight the nontrivial impact of turbulence, convection, and mesoscale flows in the presence of diverse cloud fields on the depth and strength of the frictional layer.

2.
J Geophys Res Atmos ; 126(20): e2021JD035148, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-35860759

ABSTRACT

A growing body of literature investigates convective organization, but few studies to date have sought to investigate how wind shear plays a role in the spatial organization of shallow (trade-wind) convection. The present study hence investigates the morphology of precipitating marine cumulus convection using large-eddy-simulation experiments with zonal forward and backward shear and without shear. One set of simulations includes evaporation of precipitation, promoting cold-pool development, and another set inhibits the evaporation of precipitation and thus cold-pool formation. Without (or with only weak) subcloud-layer shear, conditions are unfavorable for convective deepening, as clouds remain stationary relative to their subcloud-layer roots so that precipitative downdrafts interfere with emerging updrafts. Under subcloud-layer forward shear (FS), where the wind strengthens with height (a condition that is commonly found in the trades), clouds move at greater speed than their roots and precipitation falls downwind away from emerging updrafts. FS in the subcloud layer appears to promote the development of stronger subcloud circulations, with greater divergence in the cold-pool area downwind of the original cell and larger convergence and stronger uplift at the gust front boundary. As clouds shear forward, a larger fraction of precipitation falls outside of clouds, leading to more moistening within the cold pool (gust front).

3.
J Geophys Res Atmos ; 126(21): e2021JD035087, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-35865264

ABSTRACT

This study investigates how wind shear and momentum fluxes in the surface- and boundary layer vary across wind and cloud regimes. We use a 9-year-long data set from the Cabauw observatory complemented by (8.2 × 8.2 k m 2 ) daily Large Eddy Simulation (LES) hindcasts. An automated algorithm classifies observed and simulated days into different cloud regimes: (a) clear-sky days, (b) days with shallow convective clouds rooted in the surface layer, with two ranges of cloud cover, and (c) non-convective cloud days. Categorized days in observations and LES do not always match, particularly the number of non-convective cloud days are underestimated in the LES, which likes to develop convection. However, the climatology and diurnal cycle of winds for each regime are very similar in LES and observations, strengthening our confidence in LES' skill to reproduce certain clouds for certain atmospheric states. Along-wind momentum flux profiles are similar across all regimes, but large cloud cover (convective and non-convective) days have larger total momentum flux distributed over a deeper layer, with up to 30% of the surface flux still present near cloud base. The clear-sky and especially shallow cumulus regime with low cloud cover have notably larger crosswind momentum fluxes in the boundary layer. Surface-layer wind shear at daytime is smallest in the shallow cumulus regimes, having deeper boundary layers and a steady increase in surface layer wind speed during daytime. Compared to clear-sky days at a similar stability, convective cloud regimes have smaller surface-layer wind shear and larger surface friction than estimated by Monin-Obukhov Similarity Theory.

4.
J Adv Model Earth Syst ; 12(12): e2020MS002183, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33381277

ABSTRACT

Motivated by an observed relationship between marine low cloud cover and surface wind speed, this study investigates how vertical wind shear affects trade-wind cumulus convection, including shallow cumulus and congestus with tops below the freezing level. We ran large-eddy simulations for an idealized case of trade-wind convection using different vertical shears in the zonal wind. Backward shear, whereby surface easterlies become upper westerlies, is effective at limiting vertical cloud development, which leads to a moister, shallower, and cloudier trade-wind layer. Without shear or with forward shear, shallow convection tends to deepen more, but clouds tops are still limited under forward shear. A number of mechanisms explain the observed behavior: First, shear leads to different surface wind speeds and, in turn, surface heat and moisture fluxes due to momentum transport, whereby the weakest surface wind speeds develop under backward shear. Second, a forward shear profile in the subcloud layer enhances moisture aggregation and leads to larger cloud clusters, but only on large domains that generally support cloud organization. Third, any absolute amount of shear across the cloud layer limits updraft speeds by enhancing the downward oriented pressure perturbation force. Backward shear-the most typical shear found in the winter trades-can thus be argued a key ingredient at setting the typical structure of the trade-wind layer.

SELECTION OF CITATIONS
SEARCH DETAIL
...