Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Today Bio ; 16: 100343, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35865410

ABSTRACT

Articular cartilage defects fail to heal spontaneously, typically progressing to osteoarthritis. Bone marrow stimulation techniques such as microfracture (MFX) are the current surgical standard of care; however MFX typically produces an inferior fibro-cartilaginous tissue which provides only temporary symptomatic relief. Here we implanted solubilised articular cartilage extracellular matrix (ECM) derived scaffolds into critically sized chondral defects in goats, securely anchoring these implants to the joint surface using a 3D-printed fixation device that overcame the need for sutures or glues. In vitro these ECM scaffolds were found to be inherently chondro-inductive, while in vivo they promoted superior articular cartilage regeneration compared to microfracture. In an attempt to further improve the quality of repair, we loaded these scaffolds with a known chemotactic factor, transforming growth factor (TGF)-ß3. In vivo such TGF-ß3 loaded scaffolds promoted superior articular cartilage regeneration. This study demonstrates that ECM derived biomaterials, either alone and particularly when combined with exogenous growth factors, can successfully treat articular cartilage defects in a clinically relevant large animal model.

2.
Acta Biomater ; 143: 266-281, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35278686

ABSTRACT

While some clinical advances in cartilage repair have occurred, osteochondral (OC) defect repair remains a significant challenge, with current scaffold-based approaches failing to recapitulate the complex, hierarchical structure of native articular cartilage (AC). To address this need, we fabricated bilayered extracellular matrix (ECM)-derived scaffolds with aligned pore architectures. By modifying the freeze-drying kinetics and controlling the direction of heat transfer during freezing, it was possible to produce anisotropic scaffolds with larger pores which supported homogenous cellular infiltration and improved sulfated glycosaminoglycan deposition. Neo-tissue organization in vitro could also be controlled by altering scaffold pore architecture, with collagen fibres aligning parallel to the long-axis of the pores within scaffolds containing aligned pore networks. Furthermore, we used in vitro and in vivo assays to demonstrate that AC and bone ECM derived scaffolds could preferentially direct the differentiation of mesenchymal stromal cells (MSCs) towards either a chondrogenic or osteogenic lineage respectively, enabling the development of bilayered ECM scaffolds capable of spatially supporting unique tissue phenotypes. Finally, we implanted these scaffolds into a large animal model of OC defect repair. After 6 months in vivo, scaffold implantation was found to improve cartilage matrix deposition, with collagen fibres preferentially aligning parallel to the long axis of the scaffold pores, resulting in a repair tissue that structurally and compositionally was more hyaline-like in nature. These results demonstrate how scaffold architecture and composition can be spatially modulated to direct the regeneration of complex interfaces such as the osteochondral unit, enabling their use as cell-free, off-the-shelf implants for joint regeneration. STATEMENT OF SIGNIFICANCE: The architecture of the extracellular matrix, while integral to tissue function, is often neglected in the design and evaluation of regenerative biomaterials. In this study we developed a bilayered scaffold for osteochondral defect repair consisting of tissue-specific extracellular matrix (ECM)-derived biomaterials to spatially direct stem/progenitor cell differentiation, with a tailored pore microarchitecture to promote the development of a repair tissue that recapitulates the hierarchical structure of native AC. The use of this bilayered scaffold resulted in improved tissue repair outcomes in a large animal model, specifically the ability to guide neo-tissue organization and therefore recapitulate key aspects of the zonal structure of native articular cartilage. These bilayer scaffolds have the potential to become a new therapeutic option for osteochondral defect repair.


Subject(s)
Cartilage, Articular , Tissue Scaffolds , Animals , Biocompatible Materials/chemistry , Chondrogenesis , Collagen , Extracellular Matrix , Tissue Engineering/methods , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...