Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicon ; 243: 107738, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38685389

ABSTRACT

In the end of March 2018, an unprecedented food poisoning incident due to ingestion of the visceral balls of geoduck Panopea japonica occurred in Japan. The patient, presented with symptoms of numbness on the lips and general weakness, was diagnosed as paralytic shellfish poisoning (PSP). The patient immediately treated with the mechanical ventilation recovered and left the hospital after 3 days treatment. Saxitoxins (STXs) in the plasma and urinary samples collected from the patient on the first and second day after hospitalization were analyzed by ultra high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC/MS/MS) and liquid chromatography with post-column fluorescent detection (LC/FLD). The STXs levels of 499.1 and 6.0 µg/L of STX dihydrochloride equivalent (STX·2HCl eq.) were quantitated by LC/FLD in the urinary samples on the first and second day, respectively. In addition, geoducks harvested from the same areas of the PSP causative specimens after the incident were analyzed by LC/FLD, and the results showed the level of STXs in their whole bodies of the geoducks exceeding 0.8 mg STX·2HCl eq./kg which is the maximum levels of STX in CODEX STAN 292-2008. Prominent toxins in STXs that detected in urinary and geoduck samples and identified by UHPLC/MS/MS and LC/FLD were gonyautoxin-1+4 (GTX1+4). These results concluded that the incident was the food poisoning due to STXs accumulated in the geoducks. This is the first PSP case caused by consumption of geoducks in Japan. This is also the first PSP case that causative toxins are detected in urinary samples of patients involved in PSP in Japan.


Subject(s)
Saxitoxin , Shellfish Poisoning , Tandem Mass Spectrometry , Animals , Humans , Chromatography, High Pressure Liquid , Japan
2.
Article in English | MEDLINE | ID: mdl-38460449

ABSTRACT

Lipophilic marine biotoxin azaspiracids (AZAs) are produced by dinoflagellates Azadinium and Amphidoma. Recently, several strains of Azadinium poporum were isolated from Japanese coastal waters, and detailed toxin profiles of two strains (mdd421 and HM536) among them were clarified by several detection techniques on liquid chromatography-tandem mass spectrometry (LC-MS/MS) and liquid chromatography-quadrupole time of flight mass spectrometry (LC-QTOFMS). In our present study, AZA analogues in seven strains of A. poporum from Japanese coastal waters (including two previously reported strains) were determined by these detection techniques. The dominant AZA in the seven strains was AZA2 accompanied by small amounts of several known AZAs and twelve new AZA analogues. Eight of the twelve new AZA analogues discovered in our present study were detected as bi-charged ions on the positive mode LC/MS/MS. This is the first report describing AZA analogues detected as bi-charged ions with hexose and sulfate groups in their structures.


Subject(s)
Dinoflagellida , Polyether Toxins , Spiro Compounds , Tandem Mass Spectrometry , Chromatography, Liquid , Japan , Dinoflagellida/chemistry , Marine Toxins/analysis , Spiro Compounds/analysis
3.
Chemosphere ; 278: 130224, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33813339

ABSTRACT

The scallop, Patinopecten yessoensis, was screened for new saxitoxin analogues to study the metabolism of paralytic shellfish toxins (PSTs), and this resulted in the discovery of two new analogues: M5-hemiaminal (HA) and M6-HA. M5-HA was isolated and its structure was determined by using NMR spectroscopy. It contains hydrogen at C-4 with opposite stereochemistry to that in saxitoxin, and a hemiaminal was formed between 9-NH2 and the hydrated ketone at C-12 in α-orientation. This is the first reported structural feature in a natural saxitoxin analogue, whereas the same ring system has previously been reported in a synthetic saxitoxin analogue, FD-saxitoxin. Acid hydrolysis of the carbamoyl N-sulfate in M5-HA produced M6-HA which was also identified in P. yessoensis by using LC-MSMS. M5-HA was not synthetically produced from M1 (11-hydroxy gonyautoxin-5) and M3 (11,11-dihydroxy gonyautoxin-5) through incubation in aqueous buffers. Furthermore, PSTs in the hepatopancreas of P. yessoensis, cultured in a bay located in northeastern Japan, were chronologically analyzed in 2018. The highest concentrations of M1/M3/M5-HA were observed two weeks after C-toxins had reached their highest concentrations, which provides evidence that M1/M3/M5-HA are metabolites of C-toxins. The voltage-gated sodium channel blockage activity of M6-HA was not detected at the concentration of 140 nM by using the Neuro-2A veratridine/ouabain assay.


Subject(s)
Pectinidae , Saxitoxin , Animals , Japan , Saxitoxin/toxicity , Seafood , Shellfish/analysis
4.
Mar Drugs ; 17(12)2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31766477

ABSTRACT

Paralytic shellfish toxins (PSTs) are the major neurotoxic contaminants of edible bivalves in Japan. Tetrodotoxin (TTX) was recently detected in bivalve shellfish around the world, drawing widespread attention. In Japan, high levels of TTX were reported in the digestive gland of the scallop, Patinopecten yessoensis, in 1993; however, no new data have emerged since then. In this study, we simultaneously analyzed PSTs and TTX in scallops cultured in a bay of east Japan using hydrophilic interaction chromatography (HILIC)-MS/MS. These scallops were temporally collected from April to December 2017. The highest concentration of PSTs (182 µmol/kg, total congeners) in the hepatopancreas was detected in samples collected on May 23, lined to the cell density of the dinoflagellate, Alexandrium tamarense, in seawater around the scallops, whereas the highest concentration of TTX (421 nmol/kg) was detected in samples collected on August 22. Contrary to the previous report, temporal variation of the PSTs and TTX concentrations did not coincide. The highest concentration of TTX in the entire edible tissues was 7.3 µg/kg (23 nmol/kg) in samples obtained on August 22, which was lower than the European Food Safety Authority (EFSA)-proposed threshold, 44 µg TTX equivalents/kg shellfish meat. In addition, 12ß-deoxygonyautoxin 3 was firstly identified in scallops.


Subject(s)
Dinoflagellida/chemistry , Pectinidae/chemistry , Saxitoxin/analogs & derivatives , Seafood/analysis , Tetrodotoxin/analysis , Animals , Aquaculture , Bays , Chromatography, High Pressure Liquid , Japan , Saxitoxin/analysis , Saxitoxin/toxicity , Seasons , Seawater/microbiology , Shellfish Poisoning/etiology , Shellfish Poisoning/prevention & control , Tandem Mass Spectrometry , Tetrodotoxin/toxicity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...