Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38003328

ABSTRACT

Obesity and its attendant conditions have become major health problems worldwide, and obesity is currently ranked as the fifth most common cause of death globally. Complex environmental and genetic factors are causes of the current obesity epidemic. Diet, lifestyle, chemical exposure, and other confounding factors are difficult to manage in humans. The mice model is helpful in researching genetic BW gain because genetic and environmental risk factors can be controlled in mice. Studies in mouse strains with various genetic backgrounds and established genetic structures provide unparalleled opportunities to find and analyze trait-related genomic loci. In this study, we used the Collaborative Cross (CC), a large panel of recombinant inbred mouse strains, to present a predictive study using heterozygous Smad4 knockout profiles of CC mice to understand and effectively identify predispositions to body weight gain. Male C57Bl/6J Smad4+/- mice were mated with female mice from 10 different CC lines to create F1 mice (Smad4+/-x CC). Body weight (BW) was measured weekly until week 16 and then monthly until the end of the study (week 48). The heritability (H2) of the assessed traits was estimated and presented. Comparative analysis of various machine learning algorithms for predicting the BW changes and genotype of mice was conducted. Our data showed that the body weight records of F1 mice with different CC lines differed between wild-type and mutant Smad4 mice during the experiment. Genetic background affects weight gain and some lines gained more weight in the presence of heterozygous Smad4 knockout, while others gained less, but, in general, the mutation caused overweight mice, except for a few lines. In both control and mutant groups, female %BW had a higher heritability (H2) value than males. Additionally, both sexes with wild-type genotypes showed higher heritability values than the mutant group. Logistic regression provides the most accurate mouse genotype predictions using machine learning. We plan to validate the proposed method on more CC lines and mice per line to expand the literature on machine learning for BW prediction.


Subject(s)
Collaborative Cross Mice , Obesity , Animals , Female , Humans , Male , Mice , Body Weight/genetics , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Knockout , Obesity/genetics
2.
Int J Mol Sci ; 24(9)2023 May 03.
Article in English | MEDLINE | ID: mdl-37175908

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a severe chronic epidemic that results from the body's improper usage of the hormone insulin. Globally, 700 million people are expected to have received a diabetes diagnosis by 2045, according to the International Diabetes Federation (IDF). Cancer and macro- and microvascular illnesses are only a few immediate and long-term issues it could lead to. T2DM accelerates the effect of organ weights by triggering a hyperinflammatory response in the body's organs, inhibiting tissue repair and resolving inflammation. Understanding how genetic variation translates into different clinical presentations may highlight the mechanisms through which dietary elements may initiate or accelerate inflammatory disease processes and suggest potential disease-prevention techniques. To address the host genetic background effect on the organ weight by utilizing the newly developed mouse model, the Collaborative Cross mice (CC). The study was conducted on 207 genetically different CC mice from 8 CC lines of both sexes. The experiment started with 8-week-old mice for 12 weeks. During this period, one group maintained a standard chow diet (CHD), while the other group maintained a high-fat diet (HFD). In addition, body weight was recorded bi-weekly, and at the end of the study, a glucose tolerance test, as well as tissue collection (liver, spleen, heart), were conducted. Our study observed a strong effect of HFD on blood glucose clearance among different CC lines. The HFD decreased the blood glucose clearance displayed by the significant Area Under Curve (AUC) values in both populations. In addition, variation in body weight changes among the different CC lines in response to HFD. The female liver weight significantly increased compared to males in the overall population when exposed to HFD. Moreover, males showed higher heritability values than females on the same diet. Regardless of the dietary challenge, the liver weight in the overall male population correlated positively with the final body weight. The liver weight results revealed that three different CC lines perform well under classification models. The regression results also varied among organs. Accordingly, the differences among these lines correspond to the genetic variance, and we suspect that some genetic factors invoke different body responses to HFD. Further investigations, such as quantitative trait loci (QTL) analysis and genomic studies, could find these genetic elements. These findings would prove critical factors for developing personalized medicine, as they could indicate future body responses to numerous situations early, thus preventing the development of complex diseases.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Male , Female , Mice , Animals , Diabetes Mellitus, Type 2/genetics , Collaborative Cross Mice , Organ Size , Obesity/genetics , Diet, High-Fat/adverse effects
3.
Animal Model Exp Med ; 6(2): 131-145, 2023 04.
Article in English | MEDLINE | ID: mdl-37026700

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D) is an adult-onset and obese form of diabetes caused by an interplay between genetic, epigenetic, and environmental components. Here, we have assessed a cohort of 11 genetically different collaborative cross (CC) mouse lines comprised of both sexes for T2D and obesity developments in response to oral infection and high-fat diet (HFD) challenges. METHODS: Mice were fed with either the HFD or the standard chow diet (control group) for 12 weeks starting at the age of 8 weeks. At week 5 of the experiment, half of the mice of each diet group were infected with Porphyromonas gingivalis and Fusobacterium nucleatum bacteria strains. Throughout the 12-week experimental period, body weight (BW) was recorded biweekly, and intraperitoneal glucose tolerance tests were performed at weeks 6 and 12 of the experiment to evaluate the glucose tolerance status of mice. RESULTS: Statistical analysis has shown the significance of phenotypic variations between the CC lines, which have different genetic backgrounds and sex effects in different experimental groups. The heritability of the studied phenotypes was estimated and ranged between 0.45 and 0.85. We applied machine learning methods to make an early call for T2D and its prognosis. The results showed that classification with random forest could reach the highest accuracy classification (ACC = 0.91) when all the attributes were used. CONCLUSION: Using sex, diet, infection status, initial BW, and area under the curve (AUC) at week 6, we could classify the final phenotypes/outcomes at the end stage of the experiment (at 12 weeks).


Subject(s)
Communicable Diseases , Diabetes Mellitus, Type 2 , Male , Female , Mice , Animals , Diabetes Mellitus, Type 2/genetics , Diet, High-Fat/adverse effects , Obesity/complications , Obesity/genetics , Body Weight , Glucose Tolerance Test
4.
Mamm Genome ; 34(1): 56-75, 2023 03.
Article in English | MEDLINE | ID: mdl-36757430

ABSTRACT

Type 2 diabetes (T2D) is a metabolic disease with an imbalance in blood glucose concentration. There are significant studies currently showing association between T2D and intestinal cancer developments. High-fat diet (HFD) plays part in the disease development of T2D, intestinal cancer and infectious diseases through many biological mechanisms, including but not limited to inflammation. Understanding the system genetics of the multimorbidity of these diseases will provide an important knowledge and platform for dissecting the complexity of these diseases. Furthermore, in this study we used some machine learning (ML) models to explore more aspects of diabetes mellitus. The ultimate aim of this project is to study the genetic factors, which underline T2D development, associated with intestinal cancer in response to a HFD consumption and oral coinfection, jointly or separately, on the same host genetic background. A cohort of 307 mice of eight different CC mouse lines in the four experimental groups was assessed. The mice were maintained on either HFD or chow diet (CHD) for 12-week period, while half of each dietary group was either coinfected with oral bacteria or uninfected. Host response to a glucose load and clearance was assessed using intraperitoneal glucose tolerance test (IPGTT) at two time points (weeks 6 and 12) during the experiment period and, subsequently, was translated to area under curve (AUC) values. At week 5 of the experiment, mice of group two and four were coinfected with Porphyromonas gingivalis (Pg) and Fusobacterium nucleatum (Fn) strains, three times a week, while keeping the other uninfected mice as a control group. At week 12, mice were killed, small intestines and colon were extracted, and subsequently, the polyp counts were assessed; as well, the intestine lengths and size were measured. Our results have shown that there is a significant variation in polyp's number in different CC lines, with a spectrum between 2.5 and 12.8 total polyps on average. There was a significant correlation between area under curve (AUC) and intestine measurements, including polyp counts, length and size. In addition, our results have shown a significant sex effect on polyp development and glucose tolerance ability with males more susceptible to HFD than females by showing higher AUC in the glucose tolerance test. The ML results showed that classification with random forest could reach the highest accuracy when all the attributes were used. These results provide an excellent platform for proceeding toward understanding the nature of the genes involved in resistance and rate of development of intestinal cancer and T2D induced by HFD and oral coinfection. Once obtained, such data can be used to predict individual risk for developing these diseases and to establish the genetically based strategy for their prevention and treatment.


Subject(s)
Coinfection , Communicable Diseases , Diabetes Mellitus, Type 2 , Intestinal Neoplasms , Male , Female , Mice , Animals , Diabetes Mellitus, Type 2/genetics , Diet, High-Fat , Collaborative Cross Mice/metabolism , Glucose/metabolism , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...