Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 3(7): e1700299, 2017 07.
Article in English | MEDLINE | ID: mdl-28776029

ABSTRACT

The great cats of the genus Panthera comprise a recent radiation whose evolutionary history is poorly understood. Their rapid diversification poses challenges to resolving their phylogeny while offering opportunities to investigate the historical dynamics of adaptive divergence. We report the sequence, de novo assembly, and annotation of the jaguar (Panthera onca) genome, a novel genome sequence for the leopard (Panthera pardus), and comparative analyses encompassing all living Panthera species. Demographic reconstructions indicated that all of these species have experienced variable episodes of population decline during the Pleistocene, ultimately leading to small effective sizes in present-day genomes. We observed pervasive genealogical discordance across Panthera genomes, caused by both incomplete lineage sorting and complex patterns of historical interspecific hybridization. We identified multiple signatures of species-specific positive selection, affecting genes involved in craniofacial and limb development, protein metabolism, hypoxia, reproduction, pigmentation, and sensory perception. There was remarkable concordance in pathways enriched in genomic segments implicated in interspecies introgression and in positive selection, suggesting that these processes were connected. We tested this hypothesis by developing exome capture probes targeting ~19,000 Panthera genes and applying them to 30 wild-caught jaguars. We found at least two genes (DOCK3 and COL4A5, both related to optic nerve development) bearing significant signatures of interspecies introgression and within-species positive selection. These findings indicate that post-speciation admixture has contributed genetic material that facilitated the adaptive evolution of big cat lineages.


Subject(s)
Evolution, Molecular , Genome , Genomics , Panthera/genetics , Animals , Computational Biology/methods , Genetic Variation , Genome-Wide Association Study , Genomics/methods , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Phylogeny , Selection, Genetic
2.
J Avian Med Surg ; 26(3): 125-9, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23156973

ABSTRACT

The hyacinth macaw (Anodorhyncus hyacinthinus), considered the largest psittacine bird species in the world, is an endangered species, with a remaining population of approximately 6500 birds in the wild. To establish hematologic and plasma biochemical reference ranges and to verify differences related to sex, samples from 29 hyacinth macaws (14 males, 15 females) were obtained from birds apprehended from illegal wildlife trade and subsequently housed at the Sorocaba Zoo, Brazil. No significant differences in hematologic or plasma biochemical values were found between females and males. Compared with published reference values, differences were found in mean concentrations of total red blood cell count, corpuscular volume, corpuscular hemoglobin level, total white blood cell count, aspartate aminotransferase level, creatine kinase concentration, alkaline phosphatase concentration, and phosphorus level. Baseline hematologic and plasma biochemical ranges were established, which may be useful as reference values for clinicians working with this endangered species in captivity or rehabilitation centers.


Subject(s)
Parrots/blood , Animals , Blood Cell Count/veterinary , Female , Hematocrit , Hemoglobins , Male , Reference Values , Sex Factors , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...