Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Toxicol In Vitro ; 55: 116-123, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30578834

ABSTRACT

In this work was evaluated the cytotoxic activity of dehydrodieugenol B (1) and methyldehydrodieugenol B (2) isolated from Nectandra leucantha (Lauraceae) through cytokinesis-block micronucleus (CBMN) and Comet assay. Compounds 1 and 2 displayed in vitro toxicity against human melanoma cells (SKMEL-147) with IC50 values of 4.4 and 43.6 µg/mL, respectively. The interaction of these compounds with resistant human melanoma cell line SKMEL-29 was also investigated. Obtained results showed a concentration-response relationship for DNA damage (DI and D%) in SKMEL-29 cells for compounds 1 and 2 causing an increase in DNA damage on their lower concentrations. Concerning the cytokinesis-block micronucleus cytome (CBMNCyt) assay, all treatments demonstrated an increase in cytostatic and cytotoxic indexes. In micronucleus quantification, compound 1 displayed higher index in comparison to control. Regarding necrotic and apoptotic cells, treatments with SKMEL-29 cells demonstrated 100% of cell death induced by compounds 1 and 2 at 25 and 88 µg/mL, respectively. Additionally, it was observed that apoptosis is prevalent in SKMEL-147 cells treated with compound 1, while necrotic cells were observed in SKMEL-29 cells treated with both compounds. In conclusion, compounds 1 and 2 are suggested as promising cytotoxic agents against human melanoma resistant cells, emphasizing the potential use of these neolignans for the treatment of melanoma.


Subject(s)
Cytotoxins/pharmacology , Lauraceae , Lignans/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Comet Assay , DNA Damage , Humans , Melanoma/drug therapy , Micronucleus Tests , Plant Stems
2.
Mutat Res Genet Toxicol Environ Mutagen ; 836(Pt B): 62-71, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30442347

ABSTRACT

In this work, we aim to provide evidence for the protective effect of a copper chelator, neocuproine (NeoCu), against the oxidative stress in NSC34 cells, which inhibits biomolecule oxidation and cell death. Results obtained with the comet assay allowed to determine the increase in oxidized purines and pyrimidines by H2O2 exposure, and their changes after the addition of NeoCu. We also observed a higher ATP7b activity in nuclei and a higher Cu concentration inside the cells, proving that the NeoCu acts directly in DNA to promote cell recovery in oxidative stress conditions, also observed in Reactive Oxygen Species (ROS) detection assay by Flow Cytometry. Based on these results, we propose that NeoCu is a promising drug for the protection of motor neuron cells during oxidative stress caused by neurodegenerative diseases in this system.


Subject(s)
Chelating Agents/pharmacology , DNA Damage , Hydrogen Peroxide/toxicity , Neuroblastoma/prevention & control , Oxidative Stress/drug effects , Phenanthrolines/pharmacology , Protective Agents/pharmacology , Copper/metabolism , Copper-Transporting ATPases/metabolism , Humans , Neuroblastoma/pathology , Oxidants/toxicity , Reactive Oxygen Species/metabolism , Tumor Cells, Cultured
3.
Biometals ; 30(1): 83-96, 2017 02.
Article in English | MEDLINE | ID: mdl-28083799

ABSTRACT

Essential trace elements are commonly found in altered concentrations in the brains of patients with neurodegenerative diseases. Many studies in trace metal determination and quantification are conducted in tissue, cell culture or whole brain. In the present investigation, we determined by ICP-MS Fe, Cu, Zn, Ca, Se, Co, Cr, Mg, and Mn in organelles (mitochondria, nuclei) and whole motor neuron cell cultured in vitro. We performed experiments using two ways to access oxidative stress: cell treatments with H2O2 or Aß-42 peptide in its oligomeric form. Both treatments caused accumulation of markers of oxidative stress, such as oxidized proteins and lipids, and alteration in DNA. Regarding trace elements, cells treated with H2O2 showed higher levels of Zn and lower levels of Ca in nuclei when compared to control cells with no oxidative treatments. On the other hand, cells treated with Aß-42 peptide in its oligomeric form showed higher levels of Mg, Ca, Fe and Zn in nuclei when compared to control cells. These differences showed that metal flux in cell organelles during an intrinsic external oxidative condition (H2O2 treatment) are different from an intrinsic external neurodegenerative treatment.


Subject(s)
Brain Chemistry , Metals/isolation & purification , Motor Neurons/chemistry , Trace Elements/isolation & purification , Calcium/chemistry , Calcium/isolation & purification , Copper/chemistry , Copper/isolation & purification , Female , Humans , Hydrogen Peroxide , Iron/chemistry , Iron/isolation & purification , Magnesium/chemistry , Magnesium/isolation & purification , Metals/chemistry , Oxidative Stress/drug effects , Spectrum Analysis , Subcellular Fractions , Trace Elements/chemistry , Zinc/chemistry , Zinc/isolation & purification
4.
Rev. bras. farmacogn ; 22(2): 389-396, Mar.-Apr. 2012. tab
Article in English | LILACS | ID: lil-624665

ABSTRACT

Himatanthus articulatus (Vahl) Woodson (Apocynaceae) is a native plant to the Amazon popularly used to treat ulcers, tumors, inflammations, cancer, syphilis and malaria. The aim of the present study was to investigate the in vivo genotoxic/antigenotoxic and mutagenic potential of this plant, using the comet and the micronucleus assays in mice. Female and male adult mice were treated with different doses of H. articulatus latex by gavage for two consecutive days. For the experiments, the latex was serially diluted with water to 1:2 (D1); 1:4 (D½) and 1:8 (D») and administered to the animals. The blood slides were exposed to hydrogen peroxide (ex vivo) to evaluate antigenotoxic effect. Under the experimental conditions used in this study, the latex of H. articulatus did not increase the frequency of DNA damage as measured by the comet assay and micronucleus test in treated mice, indicating a non-genotoxic and non-mutagenic activity. In relation to the antigenotoxicity, latex exerted protective effect against DNA damage induced by hydrogen peroxide. Therefore, our results add new information about the antigenotoxic potential of H. articulatus latex, which is popularly used in the Amazon to treat different pathologies.

5.
Food Chem Toxicol ; 50(5): 1208-14, 2012 May.
Article in English | MEDLINE | ID: mdl-22306517

ABSTRACT

The aim of the present work was to study the protective effects of rosmarinic acid against ethanol-induced DNA damage in mice. The antigenotoxic capacity of rosmarinic acid (100 mg/kg) was tested using pre-, co- and post-treatment with ethanol (5 g/kg). Peripheral blood (1 and 24 h) and brain cells (24 h) were evaluated using the comet assay and bone marrow was analyzed using the micronucleus assay (24 h). The results were compared to data of TBARS, enzymes with antioxidant activity, and DCFH-DA test. Peripheral blood and brain cells show that mean damage index (DI) and damage frequency (DF) values of ethanol with pre-treatment with rosmarinic acid group were significantly lower than in the ethanol group. In brain cells all different treatments with ethanol and rosmarinic acid showed significant decrease in DI and DF mean values when compared to ethanol group and negative control. No significant differences were observed in micronucleus frequency, activity of antioxidant enzymes and TBARS between groups. The DCFH-DA test show a reduction of 18% of fluorescence intensity when compare with ethanol group. The results show that rosmarinic acid could decrease the levels of DNA damage induced by ethanol, for both tissues and treatment periods.


Subject(s)
Antimutagenic Agents/pharmacology , Cinnamates/pharmacology , Depsides/pharmacology , Ethanol/toxicity , Mutagens/toxicity , Animals , Comet Assay , Female , Male , Mice , Reactive Oxygen Species/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Rosmarinic Acid
6.
J Photochem Photobiol B ; 99(2): 93-9, 2010 May 03.
Article in English | MEDLINE | ID: mdl-20338776

ABSTRACT

Ultraviolet radiation is known to cause adverse effects to aquatic species and aquatic environments. The fish Colossoma macropomum (tambaqui) and Arapaima gigas (pirarucu) live in the Amazon basin, near the Equator, and thus receive high intensity of ultraviolet radiation. Deforestation further aggravates the situation by reducing shade at ground level. The aim of this study was to evaluate the genotoxic effects of UVA and UVB radiation on erythrocytes of tambaqui and pirarucu fish using Micronuclei test and Comet assay. Our study showed that UV radiation caused DNA damage in both species as detected by Comet assay. In addition, there were differences in response to genotoxicity between both species, which are possibly related to their evolutionary history. Tambaqui fish exposed to ultraviolet radiation for different periods presented clear dose-response in DNA damage profile. Significant damage repair was observed 24h after cessation of ultraviolet radiation exposure. At the test conditions used, no significant increase in micronucleated cells was observed in tambaqui and pirarucu fish. Tambaqui proved to be more sensitive to ultraviolet radiation than Pirarucu, as detected by Comet assay, showing statistically higher baseline DNA damage. The present results demonstrated that alkaline Comet assay was very sensitive for detecting the UV-induced genotoxicity during the short exposure period in our study. In addition, the present study also suggests that tambaqui and pirarucu fish are useful sentinel organisms, as their UV sensitivity allows them to be effective monitors of biological hazards in the Amazon region.


Subject(s)
DNA Damage , DNA Repair , Fishes , Ultraviolet Rays , Animals , Comet Assay , Erythrocytes/radiation effects , Fishes/genetics , Mutagenicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...