Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38562812

ABSTRACT

Schwann cells are critical for the proper development and function of the peripheral nervous system, where they form a mutually beneficial relationship with axons. Past studies have highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiquitously expressed and versatile proteins. We have previously shown that while prohibitins play a crucial role in Schwann cell mitochondria for long-term myelin maintenance and axon health, they may also be present at the Schwann cell-axon interface during development. Here, we expand on this work, showing that drug-mediated modulation of prohibitins in vitro disrupts myelination and confirming that Schwann cell-specific ablation of prohibitin 2 (Phb2) in vivo results in early and severe defects in peripheral nerve development. Using a proteomic approach in vitro, we identify a pool of candidate PHB2 interactors that change their interaction with PHB2 depending on the presence of axonal signals. Furthermore, we show in vivo that loss of Phb2 in mouse Schwann cells causes ineffective proliferation and dysregulation of transcription factors EGR2 (KROX20), POU3F1 (OCT6) and POU3F2 (BRN2) that are necessary for proper Schwann cell maturation. Schwann cell-specific deletion of Jun, a transcription factor associated with negative regulation of myelination, confers partial rescue of the development defect seen in mice lacking Schwann cell Phb2. This work develops our understanding of Schwann cell biology, revealing that Phb2 may directly or indirectly modulate the timely expression of transcription factors necessary for proper peripheral nervous system development, and proposing candidates that may play a role in PHB2-mediated integration of axon signals in the Schwann cell.

2.
Int J Mol Sci ; 23(8)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35456893

ABSTRACT

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by several alterations, including disorganized brain cytoarchitecture and excitatory/inhibitory (E/I) imbalance. We aimed to analyze aspects associated with the inhibitory components in ASD, using bioinformatics to develop notions about embryonic life and tissue analysis for postnatal life. We analyzed microarray and RNAseq datasets of embryos from different ASD models, demonstrating that regions involved in neuronal development are affected. We evaluated the effect of prenatal treatment with resveratrol (RSV) on the neuronal organization and quantity of parvalbumin-positive (PV+), somatostatin-positive (SOM+), and calbindin-positive (CB+) GABAergic interneurons, besides the levels of synaptic proteins and GABA receptors in the medial prefrontal cortex (mPFC) and hippocampus (HC) of the ASD model induced by valproic acid (VPA). VPA increased the total number of neurons in the mPFC, while it reduced the number of SOM+ neurons, as well as the proportion of SOM+, PV+, and CB+ neurons (subregion-specific manner), with preventive effects of RSV. In summary, metabolic alterations or gene expression impairments could be induced by VPA, leading to extensive damage in the late developmental stages. By contrast, due to its antioxidant, neuroprotective, and opposite action on histone properties, RSV may avoid damages induced by VPA.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Prenatal Exposure Delayed Effects , Resveratrol , Valproic Acid , Animals , Autism Spectrum Disorder/metabolism , Autistic Disorder/chemically induced , Autistic Disorder/drug therapy , Autistic Disorder/genetics , Disease Models, Animal , Female , Interneurons/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Rats , Resveratrol/therapeutic use , Valproic Acid/adverse effects
3.
Data Brief ; 18: 1433-1440, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29904648

ABSTRACT

This article contains data of Social Transmission of Food Preference in an animal model of autism and the evaluation of a set of microRNA analyzed in autistic patients and animal model of autism. The analyses of the absolute consumption of two flavored food by male rats prenatally exposed to valproic acid (VPA) and treated with resveratrol (RSV), showed that VPA animals show a trend to eat less of the flavored food presented by a demonstrator rat. We also identified 13 microRNA with similar levels among rodents' experimental groups, as well as 11 microRNA with no alterations between autistic and control subjects. Further evaluation of mechanisms of VPA and RSV actions on behavioral and molecular alterations can shed light in important biomarkers and etiological triggers of autistic spectrum disorders.

4.
Oncotarget ; 8(4): 5680-5681, 2017 Jan 24.
Article in English | MEDLINE | ID: mdl-28031544
5.
PLoS One ; 10(1): e0116363, 2015.
Article in English | MEDLINE | ID: mdl-25560049

ABSTRACT

Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders primarily characterized by impaired social interaction and communication, and by restricted repetitive behaviors and interests. Ligands of histamine receptor 3 (H3R) are considered potential therapeutic agents for the treatment of different brain disorders and cognitive impairments. Considering this, the aim of the present study is to evaluate the actions of ciproxifan (CPX), an H3R antagonist, on the animal model of autism induced by prenatal exposure to valproic acid (VPA). Swiss mice were prenatally exposed to VPA on embryonic day 11 and assessed for social behavior, nociceptive threshold and repetitive behavior at 50 days of life. The treatment with CPX (3 mg/kg) or saline was administered 30 minutes before each behavioral test. The VPA group presented lower sociability index compared to VPA animals that were treated with CPX. Compared to the Control group, VPA animals presented a significantly higher nociceptive threshold, and treatment with CPX was not able to modify this parameter. In the marble burying test, the number of marbles buried by VPA animals was consistent with markedly repetitive behavior. VPA animals that received CPX buried a reduced amount of marbles. In summary, we report that an acute dose of CPX is able to attenuate sociability deficits and stereotypies present in the VPA model of autism. Our findings have the potential to help the investigations of both the molecular underpinnings of ASD and of possible treatments to ameliorate the ASD symptomatology, although more research is still necessary to corroborate and expand this initial data.


Subject(s)
Autistic Disorder/drug therapy , Histamine Antagonists/therapeutic use , Imidazoles/therapeutic use , Receptors, Histamine H3/chemistry , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Female , Histamine Antagonists/pharmacology , Imidazoles/pharmacology , Mice , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Receptors, Histamine H3/metabolism , Valproic Acid/toxicity
6.
Science ; 346(6206): 176, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25301610

ABSTRACT

Tyzio et al. (Reports, 7 February 2014, p. 675) reported that bumetanide restored the impaired oxytocin-mediated γ-aminobutyric acid (GABA) excitatory-inhibitory shift during delivery in animal models of autism, ameliorating some autistic-like characteristics in the offspring. However, standard practices in the study of these models, such as the use of sex-dimorphic or males-only analyses and implementation of tests measuring social behavior, are lacking to definitely associate their findings to autism.


Subject(s)
Autistic Disorder/chemically induced , Autistic Disorder/genetics , Cytoprotection , Oxytocin/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Female , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...