Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Med Oncol ; 39(5): 97, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35599283

ABSTRACT

Myeloproliferative neoplasms (MPN) are hematological disorders characterized by increased proliferation of precursor and mature myeloid cells. MPN patients may present driver mutations in JAK2, MPL, and CALR genes, which are essential to describe the molecular mechanisms of MPN pathogenesis. Despite all the new knowledge on MPN pathogenesis, many questions remain to be answered to develop effective therapies to cure MPN or impair its progression to acute myeloid leukemia. The present study examined the expression levels of the Hippo signaling pathway members in patients with polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), as well as the role that they play in disease pathogenesis. The Hippo pathway is a tumor suppressor pathway that participates in the regulation of cell proliferation, differentiation, and death. Our main finding was that the expression of tumor suppressor genes from Hippo pathway were downregulated and seemed to be associated with cell resistance to apoptosis and increased proliferation rate. Therefore, the decreased expression of Hippo pathway-related genes may contribute to the malignant phenotype, apoptosis resistance, and cell proliferation in MPN pathogenesis.


Subject(s)
Myeloproliferative Disorders , Polycythemia Vera , Primary Myelofibrosis , Calreticulin/genetics , Hippo Signaling Pathway , Humans , Janus Kinase 2/genetics , Mutation , Myeloproliferative Disorders/genetics , Polycythemia Vera/genetics , Receptors, Thrombopoietin/genetics
3.
Sci Rep ; 10(1): 7032, 2020 04 27.
Article in English | MEDLINE | ID: mdl-32341381

ABSTRACT

Polycythemia vera (PV) is a clonal disorder resulting from neoplastic transformation of hematopoietic stem cells, while secondary polycythemia (SP) is a disease characterized by increased absolute red blood cell mass caused by stimulation of red blood cell production. Although the physiopathology of SP and PV is distinct, patients with these diseases share similar symptoms. The early differential diagnosis may improve the quality of life and decrease the disease burden in PV patients, as well as enable curative treatment for SP patients. PV is considered an oncoinflammatory disease because PV patients exhibit augmented levels of several pro-inflammatory cytokines. In this sense, we examined whether analysis of the cytokine production profile of SP and PV patients would help to distinguish them, despite their clinical similarities. Here we reported that SP patients exhibited decreased plasma levels of, IL-17A, IFN-γ, IL-12p70 and TNF-α when compared with PV patients, suggesting that analysis of the cytokine production profile may be an useful diagnostic biomarker to distinguish PV from SP patients.


Subject(s)
Cytokines/metabolism , Polycythemia Vera/metabolism , Aged , Case-Control Studies , Female , Humans , Inflammation/metabolism , Inflammation/pathology , Male , Polycythemia Vera/pathology
4.
Hematol Transfus Cell Ther ; 40(2): 120-131, 2018.
Article in English | MEDLINE | ID: mdl-30057985

ABSTRACT

BACKGROUND: Cytokines are key immune mediators in physiological and disease processes, whose increased levels have been associated with the physiopathology of hematopoietic malignancies, such as myeloproliferative neoplasms. METHODS: This study examined the plasma cytokine profiles of patients with essential thrombocythemia, primary myelofibrosis, polycythemia vera and of healthy subjects, and analyzed correlations with JAK2 V617F status and clinical-hematological parameters. RESULTS: The proinflammatory cytokine levels were increased in myeloproliferative neoplasm patients, and the presence of the JAK2 V617F mutation was associated with high IP-10 levels in primary myelofibrosis patients. CONCLUSIONS: Essential thrombocythemia, primary myelofibrosis, and polycythemia vera patients exhibited different patterns of cytokine production, as revealed by cytokine network correlations. Together, these findings suggest that augmented cytokine levels are associated with the physiopathology of myeloproliferative neoplasms.

5.
Hematol., Transfus. Cell Ther. (Impr.) ; 40(2): 120-131, Apr.-June 2018. tab, graf, ilus
Article in English | LILACS | ID: biblio-953824

ABSTRACT

ABSTRACT Background: Cytokines are key immune mediators in physiological and disease processes, whose increased levels have been associated with the physiopathology of hematopoietic malignancies, such as myeloproliferative neoplasms. Methods: This study examined the plasma cytokine profiles of patients with essential thrombocythemia, primary myelofibrosis, polycythemia vera and of healthy subjects, and analyzed correlations with JAK2 V617F status and clinical-hematological parameters. Results: The proinflammatory cytokine levels were increased in myeloproliferative neoplasm patients, and the presence of the JAK2 V617F mutation was associated with high IP-10 levels in primary myelofibrosis patients. Conclusions: Essential thrombocythemia, primary myelofibrosis, and polycythemia vera patients exhibited different patterns of cytokine production, as revealed by cytokine network correlations. Together, these findings suggest that augmented cytokine levels are associated with the physiopathology of myeloproliferative neoplasms.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Cytokines , Janus Kinase 2 , Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative , Inflammation , Myeloproliferative Disorders , Neoplasms
6.
Einstein (Säo Paulo) ; 11(4): 540-544, out.-dez. 2013. ilus
Article in Portuguese | LILACS | ID: lil-699872

ABSTRACT

As neoplasias mieloproliferativas crônicas cromossomo Filadélfia negativas são doenças hematológicas clonais que se caracterizam pela independência ou pela hipersensibilidade dos progenitores hematopoiéticos às citocinas. Os mecanismos celulares e moleculares envolvidos na fisiopatologia das neoplasias mieloproliferativas crônicas ainda não estão totalmente esclarecidos. Achados fisiopatológicos relevantes para as neoplasias mieloproliferativas crônicas estão associados às alterações genéticas como, por exemplo, a mutação somática no gene que codifica o JAK2 (JAK2V617F). A desregulação do processo de morte celular programada, denominada apoptose, parece participar da patogênese dessas desordens. Sabe-se que a desregulação da expressão dos genes pró- e antiapoptóticos promove a resistência das células à apoptose, culminando com o acúmulo das células mieloides e estabelecendo a neoplasia. Esta revisão enfocou as alterações na regulação da apoptose em neoplasias mieloproliferativas crônicas e a importância da melhor compreensão desse mecanismo para o desenvolvimento de novas terapias para essas doenças.


Philadelphia-chromosome negative chronic myeloproliferative neoplasms are clonal hematologic diseases characterized by hematopoietic progenitor independence from or hypersensitivity to cytokines. The cellular and molecular mechanisms involved in the pathophysiology of myeloproliferative neoplasms have not yet been fully clarified. Pathophysiologic findings relevant for myeloproliferative neoplasms are associated with genetic alterations, such as, somatic mutation in the gene that codifies JAK-2 (JAK V617F). Deregulation of the process of programmed cellular death, called apoptosis, seems to participate in the pathogenesis of these disorders. It is known that expression deregulation of pro- and anti-apoptotic genes promotes cell resistance to apoptosis, culminating with the accumulation of myeloid cells and establishing neoplasms. This review will focus on the alterations in apoptosis regulation in myeloproliferative neoplasms, and the importance of a better understanding of this mechanism for the development of new therapies for these diseases.


Subject(s)
Humans , Apoptosis/genetics , Mutation/genetics , Myelodysplastic-Myeloproliferative Diseases/genetics
7.
Einstein (Sao Paulo) ; 11(4): 540-4, 2013 Dec.
Article in English, Portuguese | MEDLINE | ID: mdl-24488400

ABSTRACT

Philadelphia-chromosome negative chronic myeloproliferative neoplasms are clonal hematologic diseases characterized by hematopoietic progenitor independence from or hypersensitivity to cytokines. The cellular and molecular mechanisms involved in the pathophysiology of myeloproliferative neoplasms have not yet been fully clarified. Pathophysiologic findings relevant for myeloproliferative neoplasms are associated with genetic alterations, such as, somatic mutation in the gene that codifies JAK-2 (JAK V617F). Deregulation of the process of programmed cellular death, called apoptosis, seems to participate in the pathogenesis of these disorders. It is known that expression deregulation of pro- and anti-apoptotic genes promotes cell resistance to apoptosis, culminating with the accumulation of myeloid cells and establishing neoplasms. This review will focus on the alterations in apoptosis regulation in myeloproliferative neoplasms, and the importance of a better understanding of this mechanism for the development of new therapies for these diseases.


Subject(s)
Apoptosis/genetics , Mutation/genetics , Myelodysplastic-Myeloproliferative Diseases/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...