Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 33(9): 1844-1854.e6, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37086717

ABSTRACT

The leaf epidermis is the outermost cell layer forming the interface between plants and the atmosphere that must both provide a robust barrier against (a)biotic stressors and facilitate carbon dioxide uptake and leaf transpiration.1 To achieve these opposing requirements, the plant epidermis developed a wide range of specialized cell types such as stomata and hair cells. Although factors forming these individual cell types are known,2,3,4,5 it is poorly understood how their number and size are coordinated. Here, we identified a role for BdPRX76/BdPOX, a class III peroxidase, in regulating hair cell and stomatal size in the model grass Brachypodium distachyon. In bdpox mutants, prickle hair cells were smaller and stomata were longer. Because stomatal density remained unchanged, the negative correlation between stomatal size and density was disrupted in bdpox and resulted in higher stomatal conductance and lower intrinsic water-use efficiency. BdPOX was exclusively expressed in hair cells, suggesting that BdPOX cell-autonomously promotes hair cell size and indirectly restricts stomatal length. Cell-wall autofluorescence and lignin stainings indicated a role for BdPOX in the lignification or crosslinking of related phenolic compounds at the hair cell base. Ectopic expression of BdPOX in the stomatal lineage increased phenolic autofluorescence in guard cell (GC) walls and restricted stomatal elongation in bdpox. Together, we highlight a developmental interplay between hair cells and stomata that optimizes epidermal functionality. We propose that cell-type-specific changes disrupt this interplay and lead to compensatory developmental defects in other epidermal cell types.


Subject(s)
Brachypodium , Plant Stomata , Plant Stomata/physiology , Brachypodium/genetics , Peroxidase/metabolism , Plant Leaves/physiology , Peroxidases/metabolism
2.
Elife ; 112022 12 20.
Article in English | MEDLINE | ID: mdl-36537077

ABSTRACT

Grass stomata recruit lateral subsidiary cells (SCs), which are key to the unique stomatal morphology and the efficient plant-atmosphere gas exchange in grasses. Subsidiary mother cells (SMCs) strongly polarise before an asymmetric division forms a SC. Yet apart from a proximal polarity module that includes PANGLOSS1 (PAN1) and guides nuclear migration, little is known regarding the developmental processes that form SCs. Here, we used comparative transcriptomics of developing wild-type and SC-less bdmute leaves in the genetic model grass Brachypodium distachyon to identify novel factors involved in SC formation. This approach revealed BdPOLAR, which forms a novel, distal polarity domain in SMCs that is opposite to the proximal PAN1 domain. Both polarity domains are required for the formative SC division yet exhibit various roles in guiding pre-mitotic nuclear migration and SMC division plane orientation, respectively. Nonetheless, the domains are linked as the proximal domain controls polarisation of the distal domain. In summary, we identified two opposing polarity domains that coordinate the SC division, a process crucial for grass stomatal physiology.


Subject(s)
Plant Leaves , Plant Stomata , Plant Stomata/physiology , Cell Division , Asymmetric Cell Division , Poaceae , Cell Polarity
3.
Quant Plant Biol ; 3: e6, 2022.
Article in English | MEDLINE | ID: mdl-37077975

ABSTRACT

Stomata are cellular pores on the leaf epidermis that allow plants to regulate carbon assimilation and water loss. Stomata integrate environmental signals to regulate pore apertures and adapt gas exchange to fluctuating conditions. Here, we quantified intraspecific plasticity of stomatal gas exchange and anatomy in response to seasonal variation in Brachypodium distachyon. Over the course of 2 years, we (a) used infrared gas analysis to assess light response kinetics of 120 Bd21-3 wild-type individuals in an environmentally fluctuating greenhouse and (b) microscopically determined the seasonal variability of stomatal anatomy in a subset of these plants. We observed systemic environmental effects on gas exchange measurements and remarkable intraspecific plasticity of stomatal anatomical traits. To reliably link anatomical variation to gas exchange, we adjusted anatomical g smax calculations for grass stomatal morphology. We propose that systemic effects and variability in stomatal anatomy should be accounted for in long-term gas exchange studies.

4.
Plant J ; 101(4): 780-799, 2020 02.
Article in English | MEDLINE | ID: mdl-31571301

ABSTRACT

Stomata are cellular breathing pores on leaves that open and close to absorb photosynthetic carbon dioxide and to restrict water loss through transpiration, respectively. Grasses (Poaceae) form morphologically innovative stomata, which consist of two dumbbell-shaped guard cells flanked by two lateral subsidiary cells (SCs). This 'graminoid' morphology is associated with faster stomatal movements leading to more water-efficient gas exchange in changing environments. Here, we offer a genetic and mechanistic perspective on the unique graminoid form of grass stomata and the developmental innovations during stomatal cell lineage initiation, recruitment of SCs and stomatal morphogenesis. Furthermore, the functional consequences of the four-celled, graminoid stomatal morphology are summarized. We compile the identified players relevant for stomatal opening and closing in grasses, and discuss possible mechanisms leading to cell-type-specific regulation of osmotic potential and turgor. In conclusion, we propose that the investigation of functionally superior grass stomata might reveal routes to improve water-stress resilience of agriculturally relevant plants in a changing climate.


Subject(s)
Plant Stomata/physiology , Poaceae/physiology , Abscisic Acid/metabolism , Aquaporins/metabolism , Carbon Dioxide/metabolism , Cytoskeleton/metabolism , Gene Expression Regulation, Plant , Light , Photosynthesis/physiology , Plant Cells , Plant Stomata/anatomy & histology , Plant Stomata/cytology , Plant Stomata/growth & development , Poaceae/anatomy & histology , Poaceae/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...