Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 13: 1291433, 2023.
Article in English | MEDLINE | ID: mdl-38076451

ABSTRACT

The fall armyworm (FAW), Spodoptera frugiperda, has been the most devastating pest of corn as well as of other crops in America, and more recently in Africa and Asia. The development of resistance to chemical insecticides led the search for environmentally friendly biological alternatives such as baculoviruses. This study focuses on the primary infection of the baculovirus SfNPV-Ar in the FAW's midgut epithelium, by analyzing the differential expression of transcripts in excised midguts at 6, 12, and 24 h post-infection (hpi), and predicted their interactions. Interaction of viral factors with the infected midgut tissue could alters various cellular processes, such as the apoptotic system due to the up-regulation observed of FABP at 6 hpi and of HSP90 at 24 hpi, along with the down-regulated PRX at 6 hpi and FABP transcripts between 12 and 24 hpi. Changes in transcript regulation could affect the cellular architecture of infected cells due to up-regulation of ARP 2/3 at 6 and 12 hpi, followed by down-regulation at 24 hpi. In relation to protein folding proteins, HSP90 was up-regulated at 24 hpi and PDI was down-regulated between 6 and 12 hpi. With respect to metabolism and cellular transport, AcilBP and ATPS0 were up regulated at 6 hpi and 12 hpi, respectively. In reference to transcription and translation up-regulation of RPL11 at 6 hpi and of FPN32 and RPL19 at 24 hpi was detected, as well as the down-regulation of RPL19 at 6 hpi, of PDI and RPL7 at 12 hpi, and of FABP at 24 hpi. In conclusion, gene regulation induced by viral infection could be related to the cytoskeleton and cellular metabolism as well as to oxidative stress, apoptosis, protein folding, translation, and ribosomal structure. The results presented in this work are an approach to understanding how the virus takes control of the general metabolism of the insect host during the primary infection period.


Subject(s)
Baculoviridae , Insecticides , Animals , Baculoviridae/genetics , Spodoptera/genetics , Larva , Gene Expression Profiling , Insecticides/pharmacology
2.
Arch Microbiol ; 204(10): 598, 2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36056996

ABSTRACT

PlxyMNPV_LBIV-11 is an alphabaculovirus strain, isolated from Plutella xylostella larvae. This work characterized this strain at a biological, morphological, and molecular level to evaluate its similarity with other baculoviruses. Its ultrastructure showed a multiple arrangement of nucleocapsids within enveloped virions, all occluded within large cubical polyhedra. PlxyMNPV_LBIV-11 showed infectivity on the Hi5 and Sf9 cell lines, despite these being from heterologous origin. This in vitro infectivity was observed using either BVs or by transfection with genomic DNA. Restriction fragment patterns of PlxyMNPV_LBIV-11, using the enzymes EcoRI, BamHI and HindIII, showed a high relationship with those patterns shown by AcMNPV, except for one or two differential bands with each enzyme. Sequences of core genes lef-8 and lef-9 and the conserved polh gene showed identities ranging from 98 to 100% when compared with those of AcMNPV. Somewhat lower was the sequence identity of the gp64 gene (94%) as compared with those of AcMNPV and PlxyMNPV_CL3, which might be related to the difference in virulence. Besides, the presence of this gene in PlxyMNPV_LBIV-11 indicates that it belongs to group 1 of alphabaculoviruses. A phylogram was estimated with the core and conserved gene sequences, corroborating its high relationship with AcMNPV and PlxyMNPV_CL3. Bioassays were performed with P. xylostella larvae reared on a meridic diet, whose LC50 values indicated lower virulence than AcMNPV when tested against P. xylostella, Spodoptera frugiperda, and Trichoplusia ni larvae. Its virulence against S. frugiperda was only seven times lower than AcMNPV. Its potential as a biological control agent is discussed.


Subject(s)
Baculoviridae , Animals , Baculoviridae/genetics , Larva/genetics , Nucleopolyhedroviruses , Spodoptera , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...