Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 4329, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31551469

ABSTRACT

Understanding genetic architecture of plasma lipidome could provide better insights into lipid metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide association analyses of 141 lipid species (n = 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes (n = 511,700 individuals). We identify 35 lipid-species-associated loci (P <5 ×10-8), 10 of which associate with CVD risk including five new loci-COL5A1, GLTPD2, SPTLC3, MBOAT7 and GALNT16 (false discovery rate<0.05). We identify loci for lipid species that are shown to predict CVD e.g., SPTLC3 for CER(d18:1/24:1). We show that lipoprotein lipase (LPL) may more efficiently hydrolyze medium length triacylglycerides (TAGs) than others. Polyunsaturated lipids have highest heritability and genetic correlations, suggesting considerable genetic regulation at fatty acids levels. We find low genetic correlations between traditional lipids and lipid species. Our results show that lipidomic profiles capture information beyond traditional lipids and identify genetic variants modifying lipid levels and risk of CVD.


Subject(s)
Cardiovascular Diseases/metabolism , Lipidomics , Lipids/genetics , Plasma/metabolism , Cardiovascular Diseases/genetics , Genome-Wide Association Study , Humans
2.
Bioinformatics ; 35(19): 3815-3817, 2019 10 01.
Article in English | MEDLINE | ID: mdl-30793160

ABSTRACT

SUMMARY: Anduril is an analysis and integration framework that facilitates the design, use, parallelization and reproducibility of bioinformatics workflows. Anduril has been upgraded to use Scala for pipeline construction, which simplifies software maintenance, and facilitates design of complex pipelines. Additionally, Anduril's bioinformatics repository has been expanded with multiple components, and tutorial pipelines, for next-generation sequencing data analysis. AVAILABILITYAND IMPLEMENTATION: Freely available at http://anduril.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
High-Throughput Nucleotide Sequencing , Software , Data Analysis , Reproducibility of Results , Workflow
3.
Genome Med ; 2(9): 65, 2010 Sep 07.
Article in English | MEDLINE | ID: mdl-20822536

ABSTRACT

BACKGROUND: Coordinated efforts to collect large-scale data sets provide a basis for systems level understanding of complex diseases. In order to translate these fragmented and heterogeneous data sets into knowledge and medical benefits, advanced computational methods for data analysis, integration and visualization are needed. METHODS: We introduce a novel data integration framework, Anduril, for translating fragmented large-scale data into testable predictions. The Anduril framework allows rapid integration of heterogeneous data with state-of-the-art computational methods and existing knowledge in bio-databases. Anduril automatically generates thorough summary reports and a website that shows the most relevant features of each gene at a glance, allows sorting of data based on different parameters, and provides direct links to more detailed data on genes, transcripts or genomic regions. Anduril is open-source; all methods and documentation are freely available. RESULTS: We have integrated multidimensional molecular and clinical data from 338 subjects having glioblastoma multiforme, one of the deadliest and most poorly understood cancers, using Anduril. The central objective of our approach is to identify genetic loci and genes that have significant survival effect. Our results suggest several novel genetic alterations linked to glioblastoma multiforme progression and, more specifically, reveal Moesin as a novel glioblastoma multiforme-associated gene that has a strong survival effect and whose depletion in vitro significantly inhibited cell proliferation. All analysis results are available as a comprehensive website. CONCLUSIONS: Our results demonstrate that integrated analysis and visualization of multidimensional and heterogeneous data by Anduril enables drawing conclusions on functional consequences of large-scale molecular data. Many of the identified genetic loci and genes having significant survival effect have not been reported earlier in the context of glioblastoma multiforme. Thus, in addition to generally applicable novel methodology, our results provide several glioblastoma multiforme candidate genes for further studies.Anduril is available at http://csbi.ltdk.helsinki.fi/anduril/The glioblastoma multiforme analysis results are available at http://csbi.ltdk.helsinki.fi/anduril/tcga-gbm/

SELECTION OF CITATIONS
SEARCH DETAIL
...