Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 128(1): 40-9, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25380826

ABSTRACT

By controlling HIFα hydroxylation and stability, the prolyl hydroxylase domain (PHD)-containing proteins are essential to the maintenance of oxygen homeostasis; therefore these enzymes are tightly regulated. Small ubiquitin-like modifier (SUMO) is a 10-kDa protein readily conjugated to lysine residues of the targeted proteins in a process termed SUMOylation. In this study, we introduce SUMO conjugation as a novel regulator of PHD3 (also known as EGLN3). PHD3 SUMOylation occurs at a cluster of four lysines at the C-terminal end of the protein. Furthermore, PHD3 SUMOylation by SUMO2 or SUMO3 contributes to PHD3-mediated repression of HIF1-dependent transcriptional activity. Interestingly, PHD3-SUMO conjugation does not affect PHD3 hydroxylase activity or HIF1α stability, providing new evidence for a dual role of PHD3 in HIF1 regulation. Moreover, we show that hypoxia modulates PHD3-SUMO conjugation and that this modification inversely correlates with HIF1 activation. PHD3 SUMOylation highlights a new and additional layer of regulation that is likely required to fine-tune HIF function.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation/physiology , Transcription, Genetic/physiology , Ubiquitins/metabolism , Animals , COS Cells , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Protein Stability , Protein Structure, Tertiary , Small Ubiquitin-Related Modifier Proteins/genetics , Ubiquitins/genetics
2.
Biol Chem ; 394(4): 459-69, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23362194

ABSTRACT

By driving the primary transcriptional response, the hypoxia inducible factor (HIF) is a master player of the hypoxia-signaling cascade, activation of which is essential to maintain oxygen homeostasis. HIF is formed by the interaction of a constitutive HIF-1ß subunit with a HIF-α subunit tightly regulated through the concerted action of the prolyl hydroxylase domain containing proteins (PHDs) and factor inhibiting HIF. In well-oxygenated cells, HIF-α prolyl-hydroxylation by PHDs is the recognition signal for the binding of the ubiquitin E3 ligase pVHL, allowing protein poly-ubiquitination and degradation by the proteasome. Factor inhibiting HIF-mediated asparaginyl hydroxylation prevents interaction with the CBP/p300 coactivator and hence reduces HIF-dependent transcriptional activity. Upon low oxygen availability, HIF-α hydroxylation is blocked, resulting in protein stabilization and HIF complex activation. Post-translational modifications other than hydroxylation appear to be important in the cellular response to hypoxia. Small ubiquitin-like modifier (SUMO) is a 10 kDa protein readily conjugated to the lysine (K) residues of numerous cellular substrates in a sequential process termed SUMOylation. Recent data support the idea that a fine balance in SUMOylation/deSUMOylation is required for the adequate activation of the hypoxia-signaling cascade. In the present review, we will concentrate on the mechanisms of SUMOylation and its consequences in the cellular response to hypoxia.


Subject(s)
Hypoxia/metabolism , Signal Transduction/physiology , Sumoylation/physiology , Animals , Humans , Hypoxia/enzymology , Hypoxia/genetics , Procollagen-Proline Dioxygenase/genetics , Procollagen-Proline Dioxygenase/metabolism , Signal Transduction/genetics , Sumoylation/genetics
4.
J Biol Chem ; 285(24): 18217-24, 2010 Jun 11.
Article in English | MEDLINE | ID: mdl-20368331

ABSTRACT

Hypoxia-inducible factor (HIF) is a heterodimeric transcription factor that activates the cellular response to hypoxia. The HIF1alpha subunit is constantly synthesized and degraded under normoxia, but degradation is rapidly inhibited when oxygen levels drop. Oxygen-dependent hydroxylation by prolyl-4-hydroxylases (PHD) mediates HIF1alpha proteasome degradation. Brain ischemia limits the availability not only of oxygen but also of glucose. We hypothesized that this circumstance could have a modulating effect on HIF. We assessed the separate involvement of oxygen and glucose in HIF1alpha regulation in differentiated neuroblastoma cells subjected to ischemia. We report higher transcriptional activity and HIF1alpha expression under oxygen deprivation in the presence of glucose (OD), than in its absence (oxygen and glucose deprivation, OGD). Unexpectedly, HIF1alpha was not degraded at reoxygenation after an episode of OGD. This was not due to impairment of proteasome function, but was associated with lower HIF1alpha hydroxylation. Krebs cycle metabolites fumarate and succinate are known inhibitors of PHD, while alpha-ketoglutarate is a co-substrate of the reaction. Lack of HIF1alpha degradation in the presence of oxygen was accompanied by a very low alpha-ketoglutarate/fumarate ratio. Furthermore, treatment with a fumarate analogue prevented HIF1alpha degradation under normoxia. In all, our data suggest that postischemic metabolic alterations in Krebs cycle metabolites impair HIF1alpha degradation in the presence of oxygen by decreasing its hydroxylation, and highlight the involvement of metabolic pathways in HIF1alpha regulation besides the well known effects of oxygen.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Oxygen/metabolism , Procollagen-Proline Dioxygenase/metabolism , Proline/chemistry , Animals , Cell Line, Tumor , Citric Acid Cycle , Fumarates/chemistry , Gene Expression Regulation , Glucose/metabolism , Humans , Hydroxylation , Mice , Models, Biological , Oxygen/chemistry , Proteasome Endopeptidase Complex/metabolism , Succinic Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...