Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 380(6647): 812-817, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37228198

ABSTRACT

Iron is an essential nutrient that regulates productivity in ~30% of the ocean. Compared with deep (>2000 meter) hydrothermal activity at mid-ocean ridges that provide iron to the ocean's interior, shallow (<500 meter) hydrothermal fluids are likely to influence the surface's ecosystem. However, their effect is unknown. In this work, we show that fluids emitted along the Tonga volcanic arc (South Pacific) have a substantial impact on iron concentrations in the photic layer through vertical diffusion. This enrichment stimulates biological activity, resulting in an extensive patch of chlorophyll (360,000 square kilometers). Diazotroph activity is two to eight times higher and carbon export fluxes are two to three times higher in iron-enriched waters than in adjacent unfertilized waters. Such findings reveal a previously undescribed mechanism of natural iron fertilization in the ocean that fuels regional hotspot sinks for atmospheric CO2.


Subject(s)
Carbon Dioxide , Iron , Nitrogen Fixation , Phytoplankton , Seawater , Ecosystem , Iron/metabolism , Oceans and Seas , Phytoplankton/growth & development , Phytoplankton/metabolism , Seawater/chemistry , Seawater/microbiology , Carbon Cycle , Carbon Dioxide/metabolism
3.
Anal Chem ; 83(15): 6106-13, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21682293

ABSTRACT

The scanning electrochemical microscope (SECM) in the lithographic mode is used to assess quantitatively, from both theoretical and experimental points of view, the kinetics of irreversible transformation of electroactive molecular moieties immobilized on a surface as self-assembled monolayers (SAMs). The SECM tip allows the generation of an etchant that transforms the surface locally and irreversibly. The resulting surface patterning is detectable by different surface analyses. The quantification of the surface transformation kinetics is deduced from the evolution of the pattern dimensions with the etching time. The special case of slow etching kinetics is presented; it is predicted that the pattern evolution follows the expansion of the etchant at the substrate surface. The case of a chemically unstable etchant is considered. The model is then tested by inspecting the slow reductive patterning of a perfluorinated SAM. Good agreement is found with different independent SECM interrogation modes, depending on the insulating or conducting nature of the covered substrate. The surface transformation measurements are also compared to the reduction of solutions of perfluoroalkanes. The three-orders-of-magnitude-slower electron transfer observed at the immobilized molecules likely describes the large reorganization associated with the generation of a perfluoroalkyl-centered radical anion.


Subject(s)
Electrochemical Techniques/methods , Fluorocarbons/chemistry , Alkanes/chemistry , Electrodes , Kinetics , Models, Theoretical , Oxidation-Reduction , Silicon/chemistry , Silicon Dioxide/chemistry , Surface Properties , Tin Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...