Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 162: 111825, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33203605

ABSTRACT

There is a paucity of information on the levels of PAHs and PCBs in the deep-sea (≥200 m). In this study, the body-burdens of 16 PAHs and 29 PCBs were measured in: Actinaria (sea anemones), Holothuroidea (sea cucumber), Pennatulacea (sea pens), and Crinoidea (sea lilies) in the deep Gulf of Mexico. All epibenthic species were collected at depths of approximately 2000 m. The PAH and PCB congener profile displayed a similar pattern of bioaccumulation across all four taxa. The high molecular weight PAH, dibenz[a,h]anthracene, was the most abundant PAH in all organisms, ranging from 36 to 53% of sum total PAHs. PCBs 101 and 138 exhibited the highest levels at 20-25% of total congener concentrations in all taxa. The exposure to PAHs and PCBs is likely attributed to contaminated particulate organic matter that is consumed by the deposit and filter feeding epibenthic megafauna sampled in this study.


Subject(s)
Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Environmental Monitoring , Gulf of Mexico , Invertebrates , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis
2.
PLoS One ; 14(12): e0225345, 2019.
Article in English | MEDLINE | ID: mdl-31860642

ABSTRACT

The high respiration rates of the deep-sea benthos cannot be sustained by known carbon supply pathways alone. Here, we investigate moderately-sized reptilian food falls as a potential alternative carbon pathway. Specifically, three individual carcasses of Alligator mississippiensis were deployed along the continental slope of the northern Gulf of Mexico at depths of ~2000m in early 2019. We posit the tough hide of alligators would impeded scavengers by limiting access to soft tissues of the alligator fall. However, the scavengers began consuming the food fall 43 hours post-deployment for one individual (198.2cm, 29.7kg), and the carcass of another individual (175.3 cm, 19.5kg) was completely devoid of soft tissue at 51 days post-deployment. A third individual (172.7cm, 18.5kg) was missing completely after 8 days, with only the deployment harness and weight remaining drug 8 meters away, suggesting a large elasmobranch scavenger. Additionally, bones recovered post-deployment reveal the first observations of the bone-eating Osedax in the Gulf of Mexico and are confirmed here as new to science. The findings of this study indicate the quick and successful utilization of terrestrial and aquatic-based carbon food sources in the deep marine environment, though outcome variability may be high.


Subject(s)
Alligators and Crocodiles , Fishes , Food , Animals , Carbon , Food Supply , Gulf of Mexico
3.
R Soc Open Sci ; 6(8): 191164, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31598269

ABSTRACT

The Deepwater Horizon spill is one of the largest environmental disasters with extensive impacts on the economic and ecological health of the Gulf of Mexico. Surface oil and coastal impacts received considerable attention, but the far larger oil spill in the deep ocean and its effects received considerably less examination. Based on 2017 ROV surveys within 500 m of the wellhead, we provide evidence of continued impacts on diversity, abundance and health of deep-sea megafauna. At locations proximal to the wellhead, megafaunal communities are more homogeneous than in unimpacted areas, lacking many taxonomic groups, and driven by high densities of arthropods. Degraded hydrocarbons at the site may be attracting arthropods. The scope of impacts may extend beyond the impacted sites with the potential for impacts to pelagic food webs and commercially important species. Overall, deep-sea ecosystem health, 7 years post spill, is recovering slowly and lingering effects may be extreme.

4.
Front Microbiol ; 10: 347, 2019.
Article in English | MEDLINE | ID: mdl-30930856

ABSTRACT

Hadal ocean sediments, found at sites deeper than 6,000 m water depth, are thought to contain microbial communities distinct from those at shallower depths due to high hydrostatic pressures and higher abundances of organic matter. These communities may also differ from one other as a result of geographical isolation. Here we compare microbial community composition in surficial sediments of two hadal environments-the Mariana and Kermadec trenches-to evaluate microbial biogeography at hadal depths. Sediment microbial consortia were distinct between trenches, with higher relative sequence abundances of taxa previously correlated with organic matter degradation present in the Kermadec Trench. In contrast, the Mariana Trench, and deeper sediments in both trenches, were enriched in taxa predicted to break down recalcitrant material and contained other uncharacterized lineages. At the 97% similarity level, sequence-abundant taxa were not trench-specific and were related to those found in other hadal and abyssal habitats, indicating potential connectivity between geographically isolated sediments. Despite the diversity of microorganisms identified using culture-independent techniques, most isolates obtained under in situ pressures were related to previously identified piezophiles. Members related to these same taxa also became dominant community members when native sediments were incubated under static, long-term, unamended high-pressure conditions. Our results support the hypothesis that there is connectivity between sediment microbial populations inhabiting the Mariana and Kermadec trenches while showing that both whole communities and specific microbial lineages vary between trench of collection and sediment horizon depth. This in situ biodiversity is largely missed when incubating samples within pressure vessels and highlights the need for revised protocols for high-pressure incubations.

5.
Biol Lett ; 14(9)2018 09 12.
Article in English | MEDLINE | ID: mdl-30209040

ABSTRACT

Mechanisms leading to variation in diversity over energetic gradients continue to challenge ecologists. Changes in diversity may reflect the environmental capacity to support species' coexistence through increased niche packing or niche space expansion. Current ecological theory predicts that increases in energy may lead to both scenarios but not their relative strengths. We use experimental deep-sea, wood-fall communities, where energy supply can be controlled, to test for the importance of niche expansion and packing in functional space over an energetic gradient. Invertebrate communities were identified and counted from 16 Acacia sp. logs ranging in size from 0.6 to 20.6 kg in mass (corresponding to energy availability) deployed at 3203 m in the Pacific Ocean for 5 years. We use four fundamental energetic species-level functional traits-food source, trophic category, motility and tiering-to characterize species niches. Increases in energy on wood falls lead to increases in species richness. This higher species richness resulted from a substantial increase in mean niche overlap, suggesting that increases in energy may afford reduced competition.


Subject(s)
Ecosystem , Invertebrates , Wood , Acacia , Animals , Aquatic Organisms , Biodiversity , Biota , Pacific Ocean
6.
Mar Pollut Bull ; 64(5): 966-73, 2012 May.
Article in English | MEDLINE | ID: mdl-22386802

ABSTRACT

A deep-sea trawl survey of the Northern Gulf of Mexico has documented the abundance and diversity of human-generated litter and natural detrital plant material, from the outer margin of the continental shelf out to the Sigsbee abyssal plain. Plastics were the most frequently encountered type of material. Litter and debris were encountered more frequently in the eastern than in the western GoM. Land-derived plant material was located primarily within the head of the Mississippi Canyon, whereas ocean-derived plant material was spread evenly throughout the NE GoM. Human discards were principally from ships offshore. Some of the material was contained in metal cans that sank to the sea floor, probably in order to conform to international agreements that prohibit disposal of toxic material and plastics. The Mississippi Canyon was a focal point for litter, perhaps due to topography, currents or proximity to shipping lanes.


Subject(s)
Environmental Monitoring/methods , Waste Products/analysis , Water Pollutants/analysis , Water Pollution/statistics & numerical data , Humans , Mexico , Oceans and Seas , Plants , Seawater/chemistry , Waste Products/statistics & numerical data
7.
PLoS One ; 5(12): e15323, 2010 Dec 30.
Article in English | MEDLINE | ID: mdl-21209928

ABSTRACT

A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM), seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes). Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC) flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management.


Subject(s)
Biomass , Marine Biology/methods , Algorithms , Animals , Artificial Intelligence , Biodiversity , Carbon/chemistry , Computational Biology/methods , Ecosystem , Models, Biological , Oceans and Seas , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...