Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 28(42): 14960-7, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-23009166

ABSTRACT

The influence of pore size, relative block size, and solvent quality on the extent of diblock copolymer adsorption on alumina surfaces was determined. To this end, the block copolymer that was chosen was poly(styrene)-b-poly(methyl methacrylate) (PS-b-PMMA), in which the PMMA block strongly chemisorbs to the surface and the PS block weakly physisorbs. Several architectures (i.e., different ratios of M(n(PMMA)) and M(n)((PS))) of the PS-b-PMMA copolymers were adsorbed from various solvents onto porous alumina membranes with various pore sizes. It was determined that the diblock copolymer coverage decreased significantly as the pore size decreased, similar to the behavior of the PMMA homopolymer under the same conditions. However, the coverage decreased as the molecular weight of the anchoring block (PMMA) increased for all pore sizes, which is in contrast to the behavior of the PMMA homopolymer under the same conditions. The dependence of the coverage on the relative block size and solvent quality is analyzed on the basis of the anchor-buoy model and the deviation from it in a nonideal system. The results presented in this work are relevant to the study of block copolymer conformation in solutions and on surfaces, adsorption chromatography, and solvent sensors and controls.


Subject(s)
Aluminum Oxide/chemistry , Polymethyl Methacrylate/chemistry , Polystyrenes/chemistry , Adsorption , Molecular Structure , Surface Properties
2.
ACS Macro Lett ; 1(5): 568-573, 2012 May 15.
Article in English | MEDLINE | ID: mdl-35607063

ABSTRACT

Lignin, an abundant, naturally occurring biopolymer, is often considered "waste" and used as a simple fuel source in the paper-making process. However, lignin has emerged as a promising renewable resource for engineering materials, such as carbon fibers. Unfortunately, the molecular architecture of lignin (in vivo and extracted) is still elusive, with numerous conflicting reports in the literature, and knowledge of this structure is extremely important, not only for materials technologies, but also for production of biofuels such as cellulosic ethanol due to biomass recalcitrance. As such, the molecular structures of solvent-extracted (sulfur-free) lignins, which have been modified using various acyl chlorides, have been probed using small-angle X-ray (SAXS) and neutron (SANS) scattering in tetrahydrofuran (THF) solution along with hydrodynamic characterization using dilute solution viscometry and gel permeation chromatography (GPC) in THF. Mass spectrometry shows an absolute molecular weight ≈18-30 kDa (≈80-140 monomers), while GPC shows a relative molecular weight ∼3 kDa. A linear styrene oligomer (2.5 kDa) was also analyzed in THF using SANS. Results clearly show that lignin molecular architectures are somewhat rigid and complex, ranging from nanogels to hyperbranched macromolecules, not linear oligomers or physical assemblies of oligomers, which is consistent with previously proposed delignification (extraction) mechanisms. Future characterization using the methods discussed here can be used to guide extraction processes as well as genetic engineering technologies to convert lignin into value added materials with the potential for high positive impact on global sustainability.

3.
Langmuir ; 25(2): 1196-209, 2009 Jan 20.
Article in English | MEDLINE | ID: mdl-19090655

ABSTRACT

This study probes the behavior of two series of organic-functionalized core-shell silsesquioxane (POSS-M)p-(x/y) derivatives with various hydrophobic-hydrophilic terminal group compositions in the bulk state and within mono- and multilayered films at the air-water interface and on solid surface. POSS-M refers to mixed silsesquioxane cores, in contrast to the geometrically specific POSS compounds. It is composed of polyhedra, incompletely condensed polyhedra, ladder-type structures, linear structures, and all the possible combinations thereof and attracts great interest because of its facile preparation, low polydispersity, high yield, and low cost. The two series of (POSS-M)p-(x/y) molecules are different in hydrophobic-hydrophilic balance of their terminal groups, with x and y respectively referring to the molar percent of -OCONH-C(18)H(37) tails and -OH for p = 1 and the percent of -OCONH-C(18)H(37) tails and -OCO-C(6)H(4)COOH terminal groups for p = 2. In the bulk state, the presence of aromatic rings in (POSS-M)2-(x/y) series resulted in a lower symmetry crystal structure than the (POSS-M)1-(x/y) series. Moreover, the (POSS-M)p-(x/y) molecules that contain a sufficient amount of -OCONH-C(18)H(37) tails exhibit double endothermic transition, which attributed to the melting of alkyl chains followed by the melting of the unit cells of (POSS-M) cores. The surface morphologies for the various hydrophobic-hydrophilic combinations at surface pressure p = 0.5 mN/m are similar to that observed for the classical amphiphilic star polymers. However, at higher surface pressure (p > or = 5 mN/m), the POSS-M compounds with lower content of hydrophilic groups form a uniform monolayer.


Subject(s)
Organosilicon Compounds/chemistry , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Structure , Particle Size , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...