Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Dent Res ; 92(4): 335-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23396520

ABSTRACT

Recent evidence implicates endothelin in nociception, but it is unclear how endothelin activates trigeminal ganglion (TRG) neurons. In the present study, we investigated the expression of the endothelin receptors ETA and ETB and endothelin-induced responses in rat TRG neurons. Double-immunofluorescence studies demonstrated that ETA and ETB were expressed in TRG neurons and that 26% of ETA- or ETB-expressing neurons expressed both receptors. During whole-cell patch-clamp recording, endothelin-1 enhanced an induced current in response to capsaicin, a TRPV1 agonist, in approximately 20% of dissociated neurons. The enhancement was blocked by the PKC inhibitor chelerythrine and by the ETA antagonist BQ-123, but not by the ETB antagonist BQ-788. Ca(2+)-imaging showed that endothelin-1 increased the intracellular Ca(2+) concentration in more than 20% of the dissociated neurons. Importantly, unlike the effect of endothelin-1 on capsaicin-induced current, the Ca(2+) response was largely suppressed by BQ-788 but not by BQ-123. These results suggest that ETA-mediated TRPV1 hyperactivation via PKC activation and ETB-mediated Ca(2+) mobilization occurs in different subsets of TRG neurons. These endothelin-induced responses may contribute to the induction of orofacial pain. The ETB-mediated function in TRG neurons is a special feature in the trigeminal system because of no ETB expression in dorsal root ganglion neurons.


Subject(s)
Membrane Potentials/physiology , Neurons/metabolism , Receptor, Endothelin A/metabolism , Receptor, Endothelin B/metabolism , Trigeminal Ganglion/physiology , Animals , Evoked Potentials/physiology , Fluorescent Antibody Technique , Male , Neurons/cytology , Patch-Clamp Techniques , Rats , Rats, Wistar , Trigeminal Ganglion/cytology
2.
Neuroscience ; 180: 334-43, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21315808

ABSTRACT

Peripheral and central glial activation plays an important role in development of pain hypersensitivity induced by inflammation and nerve injury. However, the involvement of glial cells in cancer pain is not well understood. The present study evaluated the peripheral and central glial activation and the effect of an inhibitor of glial activation, propentofylline, on pain-related behaviors in a rat facial cancer model of the growth of Walker 256B cells in the unilateral vibrissal pad until days 3-4 post-inoculation. As compared with sham animals, the facial grooming period was prolonged, the withdrawal latency to radiant heat stimulation was shortened, and the withdrawal threshold by von Frey hair stimulation was decreased at the inoculated region, indicating the development of spontaneous pain, thermal hyperalgesia and mechanical allodynia. In immunostainings for Iba1 and glial fibrillary acidic protein (GFAP), although there were no morphological changes of GFAP-immunopositive satellite glial cells in the trigeminal ganglion, Iba1-immunopositive microglia and GFAP-immunopositive astrocytes in the medullary dorsal horn showed large somata with cell proliferation. After the daily i.p. administration of propentofylline beginning pre-inoculation, the central glial activation was attenuated, the prolonged facial grooming was partially suppressed, and the induced allodynia and hyperalgesia from day 2 were prevented, without a change in tumor size. These results suggest that glial activation in the CNS, but not in the peripheral nervous system, mediates the enhancement of spontaneous pain and the development of allodynia and hyperalgesia at an early stage in the facial cancer model.


Subject(s)
Central Nervous System/physiopathology , Inflammation/physiopathology , Neoplasms, Experimental/complications , Neuroglia/metabolism , Pain/physiopathology , Animals , Face , Fluorescent Antibody Technique , Hyperalgesia/etiology , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Inflammation/etiology , Inflammation/metabolism , Male , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/physiopathology , Pain/etiology , Pain/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...