Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Discov Ther ; 16(6): 273-279, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36450503

ABSTRACT

A cell-based assay was conducted to screen microbial culture broths for potentiators of neutral lipid degradation in Chinese Hamster Ovary K1 cells. A total of 5,363 microbial cultures from fungi and actinomycetes were screened in this assay. Brefeldin A (1) from fungal cultures was found to promote the degradation of triacylglycerol (TG) with an EC50 of 2.6 µM. Beauveriolides I (2), III (3), beauverolides A (4), B (5), and K (6) from fungal cultures showed potentiating effect on cholesteryl ester (CE) degradation with EC50s ranging from 0.02 to 0.13 µM. Among these compounds, 2 and 6 exhibited the strongest activities (EC50, 0.02 µM). From actinomycete cultures, oxohygrolidin (7) (EC50 for TG and CE, > 1.7 and 0.8 µM, respectively) and hygrolidin (8) (EC50 for TG and CE, 0.08 and 0.004 µM, respectively) promoted degradation of CE more preferably than TG.


Subject(s)
Fungi , Lipids , Cricetinae , Animals , Cricetulus , CHO Cells , Triglycerides
2.
Molecules ; 25(13)2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32640743

ABSTRACT

New terpendoles N-P (1-3) were isolated along with 8 structurally related known compounds including terpendoles and voluhemins from a culture broth of the fungus Volutella citrinella BF-0440. The structures of 1-3 were elucidated using various spectroscopic experiments including 1D- and 2D-NMR. All compounds 1-3 contained a common indole-diterpene backbone. Compounds 2 and 3 had 7 and 6 consecutive ring systems with an indole ring, respectively, whereas 1 had a unique indolinone plus 4 consecutive ring system. Compounds 2 and 3 inhibited both sterol O-acyltransferase 1 and 2 isozymes, but 1 lost the inhibitory activity. Structure-activity relationships of fungal indole-diterpene compounds are discussed.


Subject(s)
Diterpenes/chemistry , Hypocreales/chemistry , Sterol O-Acyltransferase/antagonists & inhibitors , Animals , CHO Cells , Cricetulus , Diterpenes/isolation & purification , Hypocreales/metabolism , Indoles/chemistry , Isoenzymes/antagonists & inhibitors , Magnetic Resonance Spectroscopy , Structure-Activity Relationship
3.
J Antibiot (Tokyo) ; 73(11): 748-755, 2020 11.
Article in English | MEDLINE | ID: mdl-32467602

ABSTRACT

New compounds, designated voluhemins A (1) and B (2), are isolated from the culture broth of the fungal strain Volutella citrinella BF-0440 along with structurally related known NK12838 (3). Spectroscopic data, including 1D and 2D NMR, elucidated their structures. Compounds 1-3 have a common indoline-diterpene core and two additional isoprenyl moieties. Compounds 1 and 3 contain a hemiaminal unit, while 2 is O-methylated 1. Their inhibitory activities toward sterol O-acyltransferase (SOAT) 1 and 2 isozymes in SOAT1- and SOAT2-expressing Chinese hamster ovary (CHO) cells show that 2 selectively inhibits the SOAT2 isozyme.


Subject(s)
Enzyme Inhibitors/isolation & purification , Hypocreales/chemistry , Sterol O-Acyltransferase/antagonists & inhibitors , Animals , CHO Cells/drug effects , CHO Cells/enzymology , Cricetulus , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hypocreales/metabolism , Magnetic Resonance Spectroscopy , Molecular Structure
4.
Bioorg Med Chem Lett ; 30(7): 126997, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32035699

ABSTRACT

Using activity guided purification, four known compounds, sesquiterpene atractylenolide III (1), and the polyacetylenes 14-acetoxy-12-senecioyloxytetradeca-2E,8E,10E-trien-4,6-diyn-1-ol (2), 14-acetoxy-12-α-methylbutyl-2E,8E,10E-trien-4,6-diyn-1-ol (3), and 14-acetoxy-12-ß -methylbutyl-2E,8E,10E-trien-4,6-diyn-1-ol (4), were isolated from a traditional herbal medicine, Atractylodes rhizome. Structurally similar 3 and 4 (3/4 mixture) were obtained as a mixture. In intact Chinese hamster ovary (CHO) K1 cell assays, 1, 2, and a 3/4 mixture selectively inhibited cholesterol [14C]oleate synthesis from [14C]oleate with IC50 values of 73.5 µM, 35.4 µM, and 10.2 µM, respectively, without any effects on cytotoxicity. As a potential target of these inhibitors involved in cholesteryl ester (CE) synthesis, effects on sterol O-acyltransferase (SOAT) activity were investigated using microsomes prepared from CHO-K1 cells as an enzyme source. Hence, these compounds inhibit SOAT activity with IC50 values (211 µM for 1, 29.0 µM for 2, and 11.8 µM for 3/4 mixture) that correlate well with those measured from intact cell assays. Our results strongly suggest that these compounds inhibit CE synthesis by blocking SOAT activity in CHO-K1 cells.


Subject(s)
Atractylodes/chemistry , Cholesterol Esters/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Polyynes/pharmacology , Rhizome/chemistry , Animals , CHO Cells , Cricetulus , Enzyme Assays , Enzyme Inhibitors/isolation & purification , Lactones/isolation & purification , Lactones/pharmacology , Microsomes/drug effects , Polyynes/isolation & purification , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Sterol O-Acyltransferase/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...