Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 226: 431-438, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30951937

ABSTRACT

Arsenic (As) contamination of drinking water is a major cause of As toxicity in many parts of the world. A study was conducted to evaluate As removal from water containing 100-700 µg/L of As and As to Fe concentration ratios of 1:5-1:1000 using the coprecipitation process with and without As/Fe adsorption onto granular activated carbon (GAC). Fe concentration required to reduce As concentrations in order to achieve the WHO standard level of 10 µg/L increased exponentially with the increase in initial As concentration. When small amounts of GAC were added to the As/Fe solutions the Fe required to remove these As concentrations reduced drastically. This decline was due to the GAC adsorption of Fe and As, enhancing the removal of these metals through coprecipitation. Predictive regression equations were developed relating the GAC dose requirement to the initial As and Fe concentrations. Zeta potential data revealed that As was adsorbed on the GAC by outer-sphere complexation whereas Fe was adsorbed by inner-sphere complexation reversing the negative charge on GAC to positive values. X-ray diffraction of the GAC samples in the presence of Fe had an additional peak characteristic of ferrihydrite (Fe oxide) compared to that of the GAC sample without Fe. The study showed that incorporating an adsorbent into the coprecipitation process has the advantage of removing As from waters at all concentrations of Fe and As compared to coprecipitation alone which does not remove As to the required levels if Fe concentration is low.


Subject(s)
Arsenic/adverse effects , Iron/therapeutic use , Water Pollutants, Chemical/chemistry , Adsorption , Iron/pharmacology
2.
J Environ Manage ; 239: 235-243, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30903835

ABSTRACT

Arsenic is a major drinking water contaminant in many countries causing serious health hazards, and therefore, attempts are being made to remove it so that people have safe drinking water supplies. The effectiveness of arsenic removal from As(V) solutions using granular activated carbon (GAC) (zero point of charge (ZPC) pH 3.2) and iron incorporated GAC (GAC-Fe) (ZPC pH 8.0) was studied at 25 ±â€¯1 °C. The batch study confirmed that GAC-Fe had higher Langmuir adsorption capacity at pH 6 (1.43 mg As/g) than GAC (1.01 mg As/g). Adsorption data of GAC-Fe fitted the Freundlich model better than the Langmuir model, thus indicating the presence of heterogeneous adsorption sites. Weber and Morris plots of the kinetic adsorption data suggested intra-particle diffusion into meso and micro pores in GAC. The column adsorption study revealed that 2-4 times larger water volumes can be treated by GAC-Fe than GAC, reducing the arsenic concentration from 100 µg/L to the WHO guideline of 10 µg/L. The volume of water treated increased with a decrease in flow velocity and influent arsenic concentration. The study indicates the high potential of GAC-Fe to remove arsenic from contaminated drinking waters in practical column filters.


Subject(s)
Arsenic , Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal , Iron
3.
Environ Sci Pollut Res Int ; 25(17): 16664-16675, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29603104

ABSTRACT

Elevated concentrations of heavy metals in water can be toxic to humans, animals, and aquatic organisms. A study was conducted on the removal of Cu, Pb, and Zn by a commonly used water treatment adsorbent, granular activated carbon (GAC), from three single, three binary (Cu-Pb, Cu-Zn, Pb-Zn), and one ternary (Cu-Pb-Zn) combination of metals. It also investigated seven mathematical models on their suitability to predict the metals adsorption capacities. Adsorption of Cu, Pb, and Zn increased with pH with an abrupt increase in adsorption at around pH 5.5, 4.5, and 6.0, respectively. At all pHs tested (2.5-7.0), the adsorption capacity followed the order Pb > Cu > Zn. The Langmuir and Sips models fitted better than the Freundlich model to the data in the single-metal system at pH 5. The Langmuir maximum adsorption capacities of Pb, Cu, and Zn (mmol/g) obtained from the model's fits were 0.142, 0.094, and 0.058, respectively. The adsorption capacities (mmol/g) for these metals at 0.01 mmol/L equilibrium liquid concentration were 0.130, 0.085, and 0.040, respectively. Ideal Adsorbed Solution (IAS)-Langmuir and IAS-Sips models fitted well to the binary and ternary metals adsorption data, whereas the Extended Langmuir and Extended Sips models' fits to the data were poor. The selectivity of adsorption followed the same order as the metals' capacities and affinities of adsorption in the single-metal systems.


Subject(s)
Charcoal/chemistry , Copper/chemistry , Lead/chemistry , Metals, Heavy/chemistry , Zinc/chemistry , Adsorption , Water , Water Purification
4.
Article in English | MEDLINE | ID: mdl-26950136

ABSTRACT

Discharging phosphate through wastewaters into waterways poses a danger to the natural environment due to the serious risks of eutrophication and health of aquatic organisms. However, this phosphate, if economically recovered, can partly overcome the anticipated future scarcity of phosphorus (P) resulting from exhaustion of natural phosphate rock reserves. An experiment was conducted to determine the efficiency of removing phosphate from a membrane bioreactor effluent (pH 7.0-7.5, 20, 35 mg phosphate/L) produced in a water reclamation plant by adsorption onto Dowex 21K XLT ion exchange resin and recover the phosphate as fertilisers. The data satisfactorily fitted to Langmuir adsorption isotherm with a maximum adsorption capacity of 38.6 mg · P/g. The adsorbed phosphate was quantitatively desorbed by leaching the column with 0.1 M NaCl solution. The desorbed phosphate was recovered as struvite when ammonium and magnesium were added at the molar ratio of phosphate, ammonium and magnesium of 1:1:1 at pH 9.5. Phosphate was also recovered from the desorbed solution as hydroxyapatite precipitate by adding calcium hydroxide to the solution at a phosphate to calcium molar ratio of 1:2 at pH 7.0. The P contents of struvite and hydroxyapatite produced were close to those of the respective commercial phosphate fertilisers.


Subject(s)
Waste Disposal, Fluid , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Animals , Bioreactors , Calcium/chemistry , Chemical Precipitation , Durapatite/chemistry , Eutrophication , Fertilizers/adverse effects , Humans , Hydrobiology , Magnesium/chemistry , Phosphorus/chemistry , Phosphorus/isolation & purification , Resins, Synthetic/chemistry , Solubility , Struvite/chemistry , Water Pollutants, Chemical/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...