Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Immunol ; 152: 45-54, 2022 12.
Article in English | MEDLINE | ID: mdl-36272249

ABSTRACT

Advances in the development of anti-HER2 monoclonal antibodies (mAbs) represent one of the most significant milestones in the treatment of HER2+ breast cancer patients. However, HER2+ metastatic breast cancer (MBC) patients display resistance towards first-generation anti-HER2 mAbs or antibody-drug conjugate (ADC) treatment. In recent years, new generation of anti-HER2 mAb and ADC including margetuximab and trastuzumab deruxtecan (T-DXd), respectively, have been approved for the treatment of previously treated HER2+ MBC patients. The successes of margetuximab and T-DXd have renewed the interest in the research and development of anti-HER2 immunotherapies for both HER2+ and HER2-low breast cancer patients. In this review, we focus on these two immunotherapeutics in terms of their mechanisms of action, preclinical findings and clinical trials leading to their approval, as well as the mechanisms of resistance to conventional anti-HER2 immunotherapies (i.e. trastuzumab, pertuzumab and T-DM1). In the future, combination of either margetuximab or T-DXd with small molecule inhibitors such as tyrosine kinase inhibitors that elicit anticancer immunogenicity may further enhance the efficacy of margetuximab or T-DXd in the treatment of HER2+ MBC patients.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Immunoconjugates , Humans , Female , Breast Neoplasms/drug therapy , Receptor, ErbB-2 , Trastuzumab/therapeutic use , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Immunotherapy
2.
PeerJ ; 10: e13444, 2022.
Article in English | MEDLINE | ID: mdl-35663523

ABSTRACT

Allergic rhinitis (AR) is a common disorder of the upper airway, while asthma is a disease affecting the lower airway and both diseases are usually comorbid. Interleukin (IL)-4 and IL-13 are critical cytokines in the induction of the pathogenic Th2 responses in AR and asthma. Targeting the IL-4/IL-13 axis at various levels of its signaling pathway has emerged as promising targeted therapy in both AR and asthma patient populations. In this review, we discuss the biological characteristics of IL-4 and IL-13, their signaling pathways, and therapeutic antibodies against each cytokine as well as their receptors. In particular, the pleiotropic roles of IL-4 and IL-13 in orchestrating Th2 responses in AR and asthma patients indicate that dual IL-4/IL-13 blockade is a promising therapeutic strategy for both diseases.


Subject(s)
Asthma , Rhinitis, Allergic , Humans , Interleukin-13/metabolism , Interleukin-4/metabolism , Th2 Cells , Asthma/drug therapy , Rhinitis, Allergic/drug therapy , Cytokines
3.
Front Med (Lausanne) ; 9: 874114, 2022.
Article in English | MEDLINE | ID: mdl-35463011

ABSTRACT

Allergic rhinitis (AR) represents a global health concern where it affects approximately 400 million people worldwide. The prevalence of AR has increased over the years along with increased urbanization and environmental pollutants thought to be some of the leading causes of the disease. Understanding the pathophysiology of AR is crucial in the development of novel therapies to treat this incurable disease that often comorbids with other airway diseases. Hence in this mini review, we summarize the well-established yet vital aspects of AR. These include the epidemiology, clinical and laboratory diagnostic criteria, AR in pediatrics, pathophysiology of AR, Th2 responses in the disease, as well as pharmacological and immunomodulating therapies for AR patients.

4.
PeerJ ; 10: e13314, 2022.
Article in English | MEDLINE | ID: mdl-35480562

ABSTRACT

Allergic rhinitis (AR) is a common allergic disease characterized by disruption of nasal epithelial barrier. In this study, we investigated the mRNA expression of zonula occludens-1 (ZO-1), ZO-2 and ZO-3 and histone deacetylase 1 (HDAC1) and HDAC2 in AR patients compared to healthy controls. RNA samples were extracted from nasal epithelial cells of house dust mites (HDMs)-sensitized AR patients and healthy controls (n = 28 in each group). The RNAs were reverse transcribed into cDNAs for measurement of ZO-1, ZO-2, ZO-3, HDAC1 and HDAC2 expression levels by quantitative PCR. The mRNA expression of ZO-1 was significantly decreased in AR patients compared to healthy controls (p = 0.010). No significant difference was observed in the expression levels of ZO-2, ZO-3, HDAC1 and HDAC2 in AR patients compared to healthy controls. We found significant associations of higher HDAC2 levels in AR patients with lower frequency of changing bedsheet (p = 0.043) and with AR patients sensitized to Dermatophagoides farinae (p = 0.041). Higher expression of ZO-2 was observed in AR patients who had pets (p = 0.007). In conclusion, our data indicated that ZO-1 expression was lower in AR patients contributing to decreased integrity of nasal epithelial barrier integrity, and HDAC2 may be involved in the pathogenesis of the disease.


Subject(s)
Rhinitis, Allergic , Zonula Occludens-1 Protein , Humans , Epithelial Cells/metabolism , Nasal Mucosa/metabolism , Rhinitis, Allergic/metabolism , RNA, Messenger/metabolism , Tight Junctions/metabolism , Zonula Occludens-1 Protein/genetics , Zonula Occludens-1 Protein/metabolism
5.
Front Mol Biosci ; 9: 819772, 2022.
Article in English | MEDLINE | ID: mdl-35372516

ABSTRACT

The IL-4/IL-13 axis is involved in the pathogenesis of allergic rhinitis (AR). In this study, we investigated the serum cytokines levels of IL-4, IL-5, IL-6, and IL-13 in AR patients, and the transcript expression levels of their receptors (i.e. IL4R, IL5RA, IL6R, and IL13RA1) in nasal epithelial cells of AR patients versus non-allergic controls. Nasal epithelial cells and blood samples of non-allergic controls (n = 30) and AR patients (n = 30) were collected to examine mRNA expression and serum cytokines levels, respectively. Bioinformatics analyses of IL-4/IL-13 receptor heterodimer association with tight junction (TJ) and JAK/STAT signaling genes were conducted in a gene expression profiling (GEP) dataset (GSE44037) of AR patients (n = 12) and healthy controls (n = 6). Serum IL-4, IL-5, IL-6 or IL-13 levels, and IL13RA1 transcript expression were significantly higher in AR patients compared with non-allergic controls. IL-4 and IL-13 serum levels were positively correlated with IL13RA1 expression in AR patients but not in non-allergic controls. In the GEP dataset (GSE44037), six TJ (CLDN4, CLDN7, CLDN12, CLDN15, TJP1, and TJP2) genes' expressions were negatively correlated, respectively, with IL-4Rα/IL-13Rα1 heterodimeric receptor expression in AR patients and not in control samples. These six TJ genes contributed to the significant enrichment of tight junction Gene Ontology (GO ID: 0070160). Lastly, STATs DNA binding motif analysis showed that each of these TJ genes contains STATs binding consensus sequence within intronic and intergenic regions. Our results suggest that increased IL-4/IL-13 serum cytokines levels may contribute to decreased TJs expression via IL-4Rα/IL-13Rα1 heterodimeric receptor in nasal epithelium of AR patients.

6.
Front Med (Lausanne) ; 9: 843432, 2022.
Article in English | MEDLINE | ID: mdl-35295602

ABSTRACT

Allergic rhinitis (AR) is a global health burden and it manifests in both nasal and non-nasal symptoms. Skin prick test (SPT) is a routine procedure to diagnose AR sensitized to common allergens including house dust mites (HDMs). The degree of sensitivity of a patient toward allergens is determined by the size of the wheal formed by SPT procedure. SPT wheal sizes are influenced by recent anti-histamine usage, however it remains unclear if SPT wheal sizes are also influenced by other factors. In this study, we set out to investigate the association between SPT wheal sizes with the demographical, clinical and environmental characteristics, as well as nasal and non-nasal symptoms severity scores, of AR patients (n = 30) sensitized to common HDMs (i.e., Dermatophagoides pteronyssinus, Dermatophagoides farinae, and Blomia tropicalis). We showed that SPT wheal sizes of HDM allergens were not associated with clinical, demographical and environmental characteristics examined. Nonetheless, significant correlations were observed between SPT wheal sizes of D. farinae sensitization with worse severity scores of all five nasal symptoms examined (i.e., sneezing, runny nose, itchy nose, congestion and postnasal drip) and four of the six non-nasal symptoms examined (i.e., throat symptoms, ear symptoms, headache and mental function). Such relationships were not observed in SPT wheal sizes of D. pteronyssinus and B. tropicalis sensitization. We suggest that increased SPT wheal sizes for D. farinae sensitization may predict the likelihood of more severe nasal and, to a lesser extent, non-nasal manifestations in AR patients.

7.
Front Immunol ; 12: 663626, 2021.
Article in English | MEDLINE | ID: mdl-34093555

ABSTRACT

Allergic rhinitis (AR) is a common disorder affecting up to 40% of the population worldwide and it usually persists throughout life. Nasal epithelial barrier constitutes the first line of defense against invasion of harmful pathogens or aeroallergens. Cell junctions comprising of tight junctions (TJs), adherens junctions, desmosomes and hemidesmosomes form the nasal epithelial barrier. Impairment of TJ molecules plays causative roles in the pathogenesis of AR. In this review, we describe and discuss the components of TJs and their disruption leading to development of AR, as well as regulation of TJs expression by epigenetic changes, neuro-immune interaction, epithelial-derived cytokines (thymic stromal lymphopoietin, IL-25 and IL-33), T helper 2 (Th2) cytokines (IL-4, IL-5, IL-6 and IL-13) and innate lymphoid cells. These growing evidence support the development of novel therapeutic approaches to restore nasal epithelial TJs expression in AR patients.


Subject(s)
Disease Susceptibility , Nasal Mucosa/metabolism , Rhinitis, Allergic/etiology , Rhinitis, Allergic/metabolism , Tight Junctions/metabolism , Allergens/immunology , Animals , Biomarkers , Cytokines/genetics , Cytokines/metabolism , Environment , Epigenomics , Gene Expression , Humans , Immunity, Innate , Lymphocytes/immunology , Lymphocytes/metabolism , Nasal Mucosa/immunology , Nasal Mucosa/pathology , Neuroimmunomodulation , Rhinitis, Allergic/pathology , Tight Junctions/pathology
8.
Sci Rep ; 11(1): 1245, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441633

ABSTRACT

The breakdown of nasal epithelial barrier occurs in allergic rhinitis (AR) patients. Impairment of cell junction molecules including tight junctions (TJs) and desmosomes plays causative roles in the pathogenesis of AR. In this study, we investigated the transcript expression levels of TJs including occludin (OCLN), claudin-3 and -7 (CLDN3 and CLDN7), desmoglein 3 (DSG3) and thymic stromal lymphopoietin (TSLP) in AR patients (n = 30) and non-allergic controls (n = 30). Nasal epithelial cells of non-allergic controls and AR patients were collected to examine their mRNA expression levels, and to correlate with clinico-demographical and environmental parameters. We demonstrated that the expression of OCLN (p = 0.009), CLDN3 (p = 0.032) or CLDN7 (p = 0.004) transcript was significantly lower in AR patients compared with non-allergic controls. No significant difference was observed in the expression of DSG3 (p = 0.750) or TSLP (p = 0.991) transcript in AR patients compared with non-allergic controls. A significant association between urban locations and lower OCLN expression (p = 0.010), or exposure to second-hand smoke with lower CLDN7 expression (p = 0.042) was found in AR patients. Interestingly, none of the TJs expression was significantly associated with having pets, frequency of changing bedsheet and housekeeping. These results suggest that defective nasal epithelial barrier in AR patients is attributable to reduced expression of OCLN and CLDN7 associated with urban locations and exposure to second-hand smoke, supporting recent findings that air pollution represents one of the causes of AR.


Subject(s)
Claudins/biosynthesis , Epithelial Cells/metabolism , Nasal Mucosa/metabolism , Occludin/biosynthesis , Rhinitis, Allergic/metabolism , Tobacco Smoke Pollution/adverse effects , Urban Population , Adult , Epithelial Cells/pathology , Female , Gene Expression Regulation , Humans , Male , Nasal Mucosa/pathology , Rhinitis, Allergic/pathology
9.
J Cell Physiol ; 234(9): 14556-14573, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30710353

ABSTRACT

Transient receptor potential (TRP) proteins are a diverse family of ion channels present in multiple types of tissues. They function as gatekeepers for responses to sensory stimuli including temperature, vision, taste, and pain through their activities in conducting ion fluxes. The TRPM (melastatin) subfamily consists of eight members (i.e., TRPM1-8), which collectively regulate fluxes of various types of cations such as K+ , Na+ , Ca2+ , and Mg2+ . Growing evidence in the past two decades indicates that TRPM ion channels, their isoforms, or long noncoding RNAs encoded within the locus may be oncogenes involved in the regulation of cancer cell growth, proliferation, autophagy, invasion, and epithelial-mesenchymal transition, and their significant association with poor clinical outcomes of cancer patients. In this review, we describe and discuss recent findings implicating TRPM channels in different malignancies, their functions, mechanisms, and signaling pathways involved in cancers, as well as summarizing their normal physiological functions and the availability of ion channel pharmacological inhibitors.

10.
Ther Adv Med Oncol ; 10: 1758835918808509, 2018.
Article in English | MEDLINE | ID: mdl-30542378

ABSTRACT

Breast cancer is the global leading cause of cancer-related death in women and it represents a major health burden worldwide. One of the promising breast cancer therapeutic avenues is through small molecule inhibitors (SMIs) which have undergone rapid progress with successful clinical trials. Recently, three emerging and vital groups of proteins are targeted by SMIs for breast cancer treatment, namely cyclin-dependent kinase 4 and 6 (CDK4/6), poly (adenosine diphosphate-ribose) polymerase (PARP) and phosphoinositide 3-kinase (PI3K). Several of these inhibitors have been approved for the treatment of breast cancer patients or progressed into late-stage clinical trials. Thus, modeling from these successful clinical trials, as well as their limitations, is pivotal for future development and trials of other inhibitors or therapeutic regimens targeting breast cancer patients. In this review, we discuss eight recently approved or novel SMIs against CDK4/6 (palbociclib, ribociclib and abemaciclib), PARP (olaparib, veliparib and talazoparib), and PI3K (buparlisib and alpelisib). The mechanisms of action, series of clinical trials and limitations are described for each inhibitor.

SELECTION OF CITATIONS
SEARCH DETAIL
...