Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 207: 108333, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181640

ABSTRACT

It has previously been shown that parthenocarpic tomato mutants, iaa9-3 and iaa9-5, can adapt, grow, and produce fruit under heat-stress conditions. However, the physiological processes in those two mutants especially for the enzymatic system that works to neutralize ROS are not clear. The objective of this research was to determine how the scavenging enzyme system responds to the heat stress in those mutants. The iaa9-3, iaa9-5, and WT-MT as a control were cultivated under two environmental conditions; normal and heat stress conditions. Vegetative and reproductive growth were observed during cultivation period. The activities of catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD) were investigated in both wild-type and parthenocarpic tomato mutants under normal and heat stress conditions. The results showed that under heat stress condition, the mutants, iaa9-3 and iaa9-5, and WT-MT resulted in reduction of the vegetative growth, but those mutants showed better growth than WT-MT. Higher chlorophyll content in iaa9-3 and iaa9-5 was observed under normal or heat stress condition. Despite their growth reduction under heat stress conditions, iaa9-3 and iaa9-5 resulted in the significant higher CAT, APX and SOD activity than WT-MT. The results suggest that higher chlorophyll content and enhanced CAT, APX and SOD activity in the iaa9-3 and iaa9-5 mutants are adaptive strategies to survive in heat stress conditions.


Subject(s)
Antioxidants , Solanum lycopersicum , Solanum lycopersicum/genetics , Reactive Oxygen Species , Superoxide Dismutase , Heat-Shock Response , Chlorophyll , Ascorbate Peroxidases
2.
Front Plant Sci ; 14: 1090774, 2023.
Article in English | MEDLINE | ID: mdl-36938002

ABSTRACT

Fruit set is one of the main problems that arise in tomato plants under heat-stress conditions, which disrupt pollen development, resulting in decreased pollen fertility. Parthenocarpic tomatoes can be used to increase plant productivity during failure of the fertilisation process under heat-stress conditions. The aim of this study were to identify the plant adaptability and fruiting capability of ?iaa9-3 and iaa9-5 tomato mutants under heat-stress conditions. The iaa9-3 and iaa9-5 and wild-type Micro-Tom (WT-MT) plants were cultivated under two temperature conditions: normal and heat-stress conditions during plant growth. The results showed that under the heat-stress condition, iaa9-3 and iaa9-5 showed delayed flowering time, increased number of flowers, and increased fruit set and produced normal-sized fruit. However, WT-MT cannot produce fruits under heat stress. The mutants can grow under heat-stress conditions, as indicated by the lower electrolyte leakage and H2O2 concentration and higher antioxidant activities compared with WT-MT under heat-stress conditions. These results suggest that iaa9-3 and iaa9-5 can be valuable genetic resources for the development of tomatoes in high-temperature environmental conditions.

3.
Front Plant Sci ; 14: 1079052, 2023.
Article in English | MEDLINE | ID: mdl-36778710

ABSTRACT

The presence of ethylene during postharvest handling of tomatoes can be the main problem in maintaining fruit shelf-life by accelerating the ripening process and causing several quality changes in fruit. Several researchers have studied the methods for improving the postharvest life of tomato fruit by controlling ethylene response, such as by mutation. New ethylene receptor mutants have been identified, namely Sletr1-1, Sletr1-2, Nr (Never ripe), Sletr4-1, and Sletr5-1. This review identifies the favorable and undesirable effects of several ethylene receptor mutants. Also, the impact of those mutations on the metabolite alteration of tomatoes and the future perspectives of those ethylene receptor mutants. The review data is taken from the primary data of our experiment related to ethylene receptor mutants and the secondary data from numerous publications in Google Scholar and other sources pertaining to ethylene physiology. This review concluded that mutation in the SlETR1 gene was more effective than mutation in NR, SLETR4, and SLETR5 genes in generating a new ethylene mutant. Sletr1-2 mutant is a potential ethylene receptor mutant for developing new tomato cultivars with prolonged fruit-shelf life without any undesirable effect. Therefore, that has many challenges to using the Sletr1-2 mutant for future purposes in breeding programs.

4.
BMC Microbiol ; 22(1): 320, 2022 12 24.
Article in English | MEDLINE | ID: mdl-36564720

ABSTRACT

BACKGROUND: Pathogenic microbes still become obstacles that can reduce the quality of plant growth, including ramie (Boehmeria nivea) plants. The study identified the microbiome and antagonistic interaction of the endophytic community from the B. nivea is necessary to improve the production of the ramie plant, especially ramie stem organs for fiber materials.  RESULTS: Twenty isolates of endophytic microorganisms were obtained from the roots, stems, leaves, and flowers. They were identified using the Internal Transcribed Spacer (ITS) region of ribosomal (rDNA), and its morphotypes obtained 20 isolates, with a composition of 9 species of bacteria and 11 species of fungi. Besides that, the disease observations on ramie stems showed that four species of pathogenic fungi were identified as Fusarium solani isolate 3,248,941, Fusarium solani isolates colpat-359, Fusarium oxysporum isolate N-61-2, Clonostachys rosea strain B3042. The endophytic microorganism of ramie ability was tested to determine their potential to inhibit the growth of the pathogenic fungi based on the in-vivo antagonist test. The isolated bacteria were only able to inhibit the growth of F. solani, with the highest percentage of 54-55%. Three species of endophytic fungi, including Cladosporium tennissimum, Fusarium falciforme, and Penicillium citrinum, showed the best inhibition against the fungal pathogen Fusarium solani with the highest inhibitory presentation of 91-95%. Inhibitory interaction between the endophytic microbes and the ramie pathogens indicated the type of antibiosis, competition, and parasitism.  CONCLUSION: The results of this study succeeded in showing the potential antifungal by endophytic fungi from ramie against the pathogens of the plant itself. P. citrinum isolate MEBP0017 showed the highest inhibition against all the pathogens of the ramie.


Subject(s)
Boehmeria , Microbiota , Endophytes/physiology , Fungi , Plants , Bacteria/genetics
5.
Data Brief ; 26: 104493, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31667257

ABSTRACT

The growing medium is an important factor for plant growth and development. Many growing media are used for orchids, but their availability is limited and some are prohibitively expensive. Therefore, alternative growing media need to be studied. This study was conducted to investigate the potency of some alternative growing media for growing two Dendrobium genotypes, D. sylvanum and D. nindii x D. stratiotes, at the post-acclimatization stage. Five growing media were used in this experiment, namely tree fern fibers, coconut fibers, sphagnum moss, asplenium root, and calliandra humus.

6.
Pak J Biol Sci ; 22(4): 201-205, 2019 Jan.
Article in English | MEDLINE | ID: mdl-31930822

ABSTRACT

BACKGROUND AND OBJECTIVE: Quality banana fruit is significantly related with number and type of metabolite produce. Metabolite production of Musa acuminata L. is effected by abiotic factors such as salinity. So the purpose of this research was to study the effect of plant response under salinity stress and also identified the chemical compound especially phenolic compound. MATERIALS AND METHODS: Explants used in this research were shoot of Musa acuminata L., Murashige and Skoog medium, Benzyl amino purine, sugar, agar, sodium chloride. The research was conducted in two stages; stage (1): Developing in vitro culture of shoot of Musa acuminata L. with NaCl treatment i.e., 0, 50, 100, 150 and 200 mM concentration, stage (2): Gas Chromatography Mass Spectrometry (GCMS) analysis on the shoot of in vitro banana plantlets. RESULTS: The findings of this study showed that compound content of shoot of banana plantlets were Amine, Ester, Propane, Keton, Alkohol, Phenol, Methyl, Acid and it was observed that Ester (27.515%) was the highest detected compound. CONCLUSION: It is concluded that the salinity had affected the plant growth. The analysis showed that the highest compound content of Musa acuminate L. Barangan cultivar was Ester and Phenols.


Subject(s)
Musa/growth & development , Phenols , Plant Shoots/growth & development , Salt Stress , Benzyl Compounds/chemistry , Dose-Response Relationship, Drug , Gas Chromatography-Mass Spectrometry , Genotype , Homeostasis , In Vitro Techniques , Purines/chemistry , Sodium Chloride/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...