Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 201: 107877, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37473675

ABSTRACT

'Corbarino' (COR) and 'Lucariello' (LUC) belong to the family of Mediterranean long shelf-life tomato landraces, producing high quality fruits under low water input cultivation regime in their traditional cultivation area. Understanding the morpho-physiological and molecular details of the peculiar drought stress tolerance of these two genotypes may be key to their valorization as breeding material. RNA sequencing of leaf samples of COR and LUC subjected to drought stress by water withholding in a semi-controlled greenhouse identified 3089 and 2135 differentially expressed genes respectively. These included COR- and LUC-specific annotated genes, as well as genes containing single nucleotide polymorphisms as compared to reference genome. Enriched Gene Ontology categories showed that categories such as response to water, oxidoreductase activity, nucleotide salvation and lipid biosynthesis-related processes were enriched among up-regulated DEGs. By contrast, growth and photosynthesis related genes were down-regulated after drought stress, consistent with leaf gas exchange and biomass accumulation measurements. Genes encoding cell wall degrading enzymes of the pectinase family were also down-regulated in drought stress conditions and upregulated in rewatering, indicating that cell wall composition/hardness is important for drought stress responses. Globally our results contribute to understanding the transcriptomic and physiological responses of representative tomato genotypes from Southern Italy, highlighting a promising set of genes to be investigated to improve tomato tolerance to drought.


Subject(s)
Solanum lycopersicum , Water , Water/metabolism , Transcriptome/genetics , Solanum lycopersicum/genetics , Plant Breeding , Gene Expression Profiling , Droughts , Stress, Physiological/genetics , Gene Expression Regulation, Plant
2.
Plant Physiol ; 183(2): 793-807, 2020 06.
Article in English | MEDLINE | ID: mdl-32123040

ABSTRACT

RNA splicing is a fundamental mechanism contributing to the definition of the cellular protein population in any given environmental condition. DNA-DAMAGE REPAIR/TOLERATION PROTEIN111 (DRT111)/SPLICING FACTOR FOR PHYTOCHROME SIGNALING is a splicing factor previously shown to interact with phytochrome B and characterized for its role in splicing of pre-mRNAs involved in photomorphogenesis. Here, we show that DRT111 interacts with Arabidopsis (Arabidopsis thaliana) Splicing Factor1, involved in 3' splicing site recognition. Double- and triple-mutant analysis shows that DRT111 controls splicing of ABI3 and acts upstream of the splicing factor SUPPRESSOR OF ABI3-ABI5. DRT111 is highly expressed in seeds and stomata of Arabidopsis and is induced by long-term treatments of polyethylene glycol and abscisic acid (ABA). DRT111 knock-out mutants are defective in ABA-induced stomatal closure and are hypersensitive to ABA during seed germination. Conversely, DRT111 overexpressing plants show ABA-hyposensitive seed germination. RNA-sequencing experiments show that in dry seeds, DRT111 controls expression and splicing of genes involved in osmotic-stress and ABA responses, light signaling, and mRNA splicing, including targets of ABSCISIC ACID INSENSITIVE3 (ABI3) and PHYTOCHROME INTERACTING FACTORs (PIFs). Consistently, expression of the germination inhibitor SOMNUS, induced by ABI3 and PIF1, is upregulated in imbibed seeds of drt111-2 mutants. Together, these results indicate that DRT111 controls sensitivity to ABA during seed development, germination, and stomatal movements, and integrates ABA- and light-regulated pathways to control seed germination.


Subject(s)
Abscisic Acid/pharmacology , Arabidopsis Proteins/metabolism , DNA Ligases/metabolism , Germination/physiology , RNA Splicing Factors/metabolism , Seeds/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , DNA Ligases/genetics , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Germination/genetics , RNA Splicing Factors/genetics , Seeds/drug effects , Seeds/genetics
3.
Plant J ; 94(6): 991-1009, 2018 06.
Article in English | MEDLINE | ID: mdl-29602224

ABSTRACT

Modulation of growth in response to environmental cues is a fundamental aspect of plant adaptation to abiotic stresses. TIP41 (TAP42 INTERACTING PROTEIN OF 41 kDa) is the Arabidopsis thaliana orthologue of proteins isolated in mammals and yeast that participate in the Target-of-Rapamycin (TOR) pathway, which modifies cell growth in response to nutrient status and environmental conditions. Here, we characterized the function of TIP41 in Arabidopsis. Expression analyses showed that TIP41 is constitutively expressed in vascular tissues, and is induced following long-term exposure to NaCl, polyethylene glycol and abscisic acid (ABA), suggesting a role of TIP41 in adaptation to abiotic stress. Visualization of a fusion protein with yellow fluorescent protein indicated that TIP41 is localized in the cytoplasm and the nucleus. Abolished expression of TIP41 results in smaller plants with a lower number of rosette leaves and lateral roots, and an increased sensitivity to treatments with chemical TOR inhibitors, indicating that TOR signalling is affected in these mutants. In addition, tip41 mutants are hypersensitive to ABA at germination and seedling stage, whereas over-expressing plants show higher tolerance. Several TOR- and ABA-responsive genes are differentially expressed in tip41, including iron homeostasis, senescence and ethylene-associated genes. In yeast and mammals, TIP41 provides a link between the TOR pathway and the protein phosphatase 2A (PP2A), which in plants participates in several ABA-mediated mechanisms. Here, we showed an interaction of TIP41 with the catalytic subunit of PP2A. Taken together, these results offer important insights into the function of Arabidopsis TIP41 in the modulation of plant growth and ABA responses.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Plant Growth Regulators/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/physiology , Gene Expression Profiling , Phosphatidylinositol 3-Kinases/metabolism , Protein Phosphatase 2/metabolism , Sequence Alignment
4.
Plant Physiol Biochem ; 118: 150-160, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28633087

ABSTRACT

The involvement and the efficiency of the antioxidants scavenging system upon drought were examined by comparing traditional tomato landraces with respect to an industrial commercial genotype (Red Setter); for the first time, comprehensive analyses of physiological, biochemical and molecular parameters were investigated directly under real field conditions, in a typical agricultural environment of Southern Italy. The characterization of the responses upon drought evidenced peculiar changes in stomatal conductance, ascorbate peroxidase and catalase activities and expression in drought tolerant tomato landraces, with respect to the industrial genotype. An in silico analysis (promoter and co-expression study) coupled to a phylogenetic investigation of selected enzymes was performed, reinforcing the hypothesis of a basal activation of ROS scavenging machinery in the Mediterranean landraces. Thus our data suggest a constitutive increase in the expression and activities of specific enzymes involved in ROS detoxification that can play a pivotal role in the drought response shown by tomato landraces. Therefore, traditional landraces could represent an important source of useful genetic variability for the improvement of commercial varieties; their ROS detoxifying capabilities denote peculiar aspects worth being explored to better describe their specific stress tolerance.


Subject(s)
Crop Production , Dehydration/metabolism , Free Radical Scavengers/metabolism , Models, Biological , Solanum lycopersicum/growth & development , Stress, Physiological , Italy
5.
Front Plant Sci ; 7: 371, 2016.
Article in English | MEDLINE | ID: mdl-27066027

ABSTRACT

Tomato is a major crop in the Mediterranean basin, where the cultivation in the open field is often vulnerable to drought. In order to adapt and survive to naturally occurring cycles of drought stress and recovery, plants employ a coordinated array of physiological, biochemical, and molecular responses. Transcriptomic studies on tomato responses to drought and subsequent recovery are few in number. As the search for novel traits to improve the genetic tolerance to drought increases, a better understanding of these responses is required. To address this need we designed a study in which we induced two cycles of prolonged drought stress and a single recovery by rewatering in tomato. In order to dissect the complexity of plant responses to drought, we analyzed the physiological responses (stomatal conductance, CO2 assimilation, and chlorophyll fluorescence), abscisic acid (ABA), and proline contents. In addition to the physiological and metabolite assays, we generated transcriptomes for multiple points during the stress and recovery cycles. Cluster analysis of differentially expressed genes (DEGs) between the conditions has revealed potential novel components in stress response. The observed reduction in leaf gas exchanges and efficiency of the photosystem PSII was concomitant with a general down-regulation of genes belonging to the photosynthesis, light harvesting, and photosystem I and II category induced by drought stress. Gene ontology (GO) categories such as cell proliferation and cell cycle were also significantly enriched in the down-regulated fraction of genes upon drought stress, which may contribute to explain the observed growth reduction. Several histone variants were also repressed during drought stress, indicating that chromatin associated processes are also affected by drought. As expected, ABA accumulated after prolonged water deficit, driving the observed enrichment of stress related GOs in the up-regulated gene fractions, which included transcripts putatively involved in stomatal movements. This transcriptomic study has yielded promising candidate genes that merit further functional studies to confirm their involvement in drought tolerance and recovery. Together, our results contribute to a better understanding of the coordinated responses taking place under drought stress and recovery in adult plants of tomato.

6.
Plant Physiol Biochem ; 105: 79-89, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27085599

ABSTRACT

The present study was undertaken to investigate the expression, occurrence and activity of glucose 6 phosphate dehydrogenase (G6PDH - EC 1.1.1.49), the key-enzyme of the Oxidative Pentose Phosphate Pathway (OPPP), in tomato plants (Solanum lycopersicum cv. Red Setter) exposed to short- and long-term drought stress. For the first time, drought effects have been evaluated in plants under different growth conditions: in hydroponic laboratory system, and in greenhouse pots under controlled conditions; and in open field, in order to evaluate drought response in a representative agricultural environment. Interestingly, changes observed appear strictly associated to the induction of well known stress response mechanisms, such as the increase of proline synthesis, accumulation of chaperone Hsp70, and ascorbate peroxidase. Results show significant increase in total activity of G6PDH, and specifically in expression and occurrence of cytosolic isoform (cy-G6PDH) in plants grown in any cultivation system upon drought. Intriguingly, the results clearly suggest that abscissic acid (ABA) pathway and signaling cascade (protein phosphatase 2C PP2C) could be strictly related to increased G6PDH expression, occurrence and activities. We hypothesized for G6PDH a specific role as one of the main reductants' suppliers to counteract the effects of drought stress, in the light of converging evidences given by young and adult tomato plants under stress of different duration and intensity.


Subject(s)
Droughts , Glucosephosphate Dehydrogenase/metabolism , Solanum lycopersicum/enzymology , Solanum lycopersicum/physiology , Dehydration , Gene Expression Regulation, Plant , Genes, Plant , Glucosephosphate Dehydrogenase/genetics , Isoenzymes/genetics , Isoenzymes/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stomata/physiology , Stress, Physiological , Time Factors
7.
Plant Physiol ; 168(1): 292-306, 2015 May.
Article in English | MEDLINE | ID: mdl-25783413

ABSTRACT

Salt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog, AtRGGA, is a functional RNA-binding protein required for a proper response to osmotic stress. AtRGGA gene expression was up-regulated in seedlings after long-term exposure to abscisic acid (ABA) and polyethylene glycol, while treatments with NaCl resulted in AtRGGA down-regulation. AtRGGA promoter analysis showed activity in several tissues, including stomata, the organs controlling transpiration. Fusion of AtRGGA with yellow fluorescent protein indicated that AtRGGA is localized in the cytoplasm and the cytoplasmic perinuclear region. In addition, the rgga knockout mutant was hypersensitive to ABA in root growth and survival tests and to salt stress during germination and at the vegetative stage. AtRGGA-overexpressing plants showed higher tolerance to ABA and salt stress on plates and in soil, accumulating lower levels of proline when exposed to drought stress. Finally, a global analysis of gene expression revealed extensive alterations in the transcriptome under salt stress, including several genes such as ASCORBATE PEROXIDASE2, GLUTATHIONE S-TRANSFERASE TAU9, and several SMALL AUXIN UPREGULATED RNA-like genes showing opposite expression behavior in transgenic and knockout plants. Taken together, our results reveal an important role of AtRGGA in the mechanisms of plant response and adaptation to stress.


Subject(s)
Adaptation, Physiological/drug effects , Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Droughts , RNA-Binding Proteins/metabolism , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Abscisic Acid/pharmacology , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Gene Knockout Techniques , Oligonucleotide Array Sequence Analysis , Phenotype , Plants, Genetically Modified , Promoter Regions, Genetic , Protein Binding/drug effects , Protein Structure, Tertiary , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Solanum tuberosum/genetics , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism
8.
J Plant Physiol ; 169(18): 1849-57, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-22854180

ABSTRACT

The identification of critical components in plant salt stress adaptation has greatly benefitted, in the last two decades, from fundamental discoveries in Arabidopsis and close model systems. Nevertheless, this approach has also highlighted a non-complete overlap between stress tolerance mechanisms in Arabidopsis and agricultural crops. Within a long-running research program aimed at identifying salt stress genetic determinants in potato by functional screening in Escherichia coli, we isolated Asg1, a stress-related gene with an unknown function. Asg1 is induced by salt stress in both potato and Arabidopsis and by abscisic acid in Arabidopsis. Asg1 is actively transcribed in all plant tissues. Furthermore, Asg1 promoter analysis confirmed its ubiquitous expression, which was remarkable in pollen, a plant tissue that undergoes drastic dehydration/hydration processes. Fusion of Asg1 with green fluorescent protein showed that the encoded protein is localized close to the plasma membrane with a non-continuous pattern of distribution. In addition, Arabidopsis knockout asg1 mutants were insensitive to both NaCl and sugar hyperosmotic environments during seed germination. Transgenic potato plants over-expressing the Asg1 gene revealed a stomatal hypersensitivity to NaCl stress which, however, did not result in a significantly improved tuber yield in stress conditions. Altogether, these data suggest that Asg1 might interfere with components of the stress signaling pathway by promoting stomatal closure and participating in stress adaptation.


Subject(s)
Gene Expression Regulation, Plant/physiology , Plant Proteins/metabolism , Plant Stomata/physiology , Solanum tuberosum/genetics , Abscisic Acid/pharmacology , Adaptation, Physiological , Arabidopsis/genetics , Arabidopsis/physiology , Carbohydrates/pharmacology , Gene Knockout Techniques , Germination , Mutation , Onions/genetics , Onions/physiology , Organ Specificity , Osmotic Pressure , Plant Growth Regulators/pharmacology , Plant Leaves/cytology , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/physiology , Plant Proteins/genetics , Plants, Genetically Modified , Recombinant Fusion Proteins , Seeds/cytology , Seeds/drug effects , Seeds/genetics , Seeds/physiology , Signal Transduction , Sodium Chloride/pharmacology , Solanum tuberosum/cytology , Solanum tuberosum/drug effects , Solanum tuberosum/physiology , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...