Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Des Devel Ther ; 18: 2531-2553, 2024.
Article in English | MEDLINE | ID: mdl-38952486

ABSTRACT

The WHO Global Status Report on Oral Health 2022 reveals that oral diseases caused by infection with oral pathogenic microorganisms affect nearly 3.5 billion people worldwide. Oral health problems are caused by the presence of S. mutans, S. sanguinis, E. faecalis and C. albicans in the oral cavity. Synthetic anti-infective drugs have been widely used to treat oral infections, but have been reported to cause side effects and resistance. Various strategies have been implemented to overcome this problem. Synthetic anti-infective drugs have been widely used to treat oral infections, but they have been reported to cause side effects and resistance. Therefore, it is important to look for safe anti-infective alternatives. Ethnobotanical and ethnopharmacological studies suggest that Red Betel leaf (Piper crocatum Ruiz & Pav) could be a potential source of oral anti-infectives. This review aims to discuss the pathogenesis mechanism of several microorganisms that play an important role in causing health problems, the mechanism of action of synthetic oral anti-infective drugs in inhibiting microbial growth in the oral cavity, and the potential of red betel leaf (Piper crocatum Ruiz & Pav) as an herbal oral anti-infective drug. This study emphasises the importance of researching natural components as an alternative treatment for oral infections that is more effective and can meet global needs.


Subject(s)
Piper , Humans , Piper/chemistry , Mouth Diseases/drug therapy , Mouth Diseases/microbiology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Mouth/microbiology
2.
Int J Paediatr Dent ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38297447

ABSTRACT

BACKGROUND: Artificial intelligence (AI) based on deep learning (DL) algorithms has shown promise in enhancing the speed and accuracy of dental anomaly detection in paediatric dentistry. AIM: This systematic review aimed to investigate the performance of AI systems in identifying dental anomalies in paediatric dentistry and compare it with human performance. DESIGN: A systematic search of Scopus, PubMed and Google Scholar was conducted from 2012 to 2022. Inclusion criteria were based on problem/patient/population, intervention/indicator, comparison and outcome scheme and specific keywords related to AI, DL, paediatric dentistry, dental anomalies, supernumerary and mesiodens. Six of 3918 initial pool articles were included, assessing nine DL sub-systems that used panoramic radiographs or cone-beam computed tomography. Article quality was assessed using QUADAS-2. RESULTS: Artificial intelligence systems based on DL algorithms showed promising potential in enhancing the speed and accuracy of dental anomaly detection, with an average of 85.38% accuracy and 86.61% sensitivity. Human performance, however, outperformed AI systems, achieving 95% accuracy and 99% sensitivity. Limitations included a limited number of articles and data heterogeneity. CONCLUSION: The potential of AI systems employing DL algorithms is highlighted in detecting dental anomalies in paediatric dentistry. Further research is needed to address limitations, explore additional anomalies and establish the broader applicability of AI in paediatric dentistry.

3.
Molecules ; 26(9)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922641

ABSTRACT

BACKGROUND: antibiotic resistance encourages the development of new therapies, or the discovery of novel antibacterial agents. Previous research revealed that Myrmecodia pendans (Sarang Semut) contain potential antibacterial agents. However, specific proteins inhibited by them have not yet been identified as either proteins targeted by antibiotics or proteins that have a role in the quorum-sensing system. This study aims to investigate and predict the action mode of antibacterial compounds with specific proteins by following the molecular docking approach. METHODS: butein (1), biflavonoid (2), 3″-methoxyepicatechin-3-O-epicatechin (3), 2-dodecyl-4-hydroxylbenzaldehyde (4), 2-dodecyl-4-hydroxylbenzaldehyde (5), pomolic acid (6), betulin (7), and sitosterol-(6'-O-tridecanoil)-3-O-ß-D-glucopyranoside (8) from M. pendans act as the ligand. Antibiotics or substrates in each protein were used as a positive control. To screen the bioactivity of compounds, ligands were analyzed by Prediction of Activity Spectra for Substances (PASS) program. They were docked with 12 proteins by AutoDock Vina in the PyRx 0.8 software application. Those proteins are penicillin-binding protein (PBP), MurB, Sortase A (SrtA), deoxyribonucleic acid (DNA) gyrase, ribonucleic acid (RNA) polymerase, ribosomal protein, Cytolysin M (ClyM), FsrB, gelatinase binding-activating pheromone (GBAP), and PgrX retrieved from UniProt. The docking results were analyzed by the ProteinsPlus and Discovery Studio software applications. RESULTS: most compounds have Pa value over 0.5 against proteins in the cell wall. In nearly all proteins, biflavonoid (2) has the strongest binding affinity. However, compound 2 binds only three residues, so that 2 is the non-competitive inhibitor. CONCLUSION: compound 2 can be a lead compound for an antibacterial agent in each pathway.


Subject(s)
Anti-Bacterial Agents/pharmacology , Rubiaceae/chemistry , Molecular Docking Simulation , Quorum Sensing/drug effects
4.
Materials (Basel) ; 14(2)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467680

ABSTRACT

Mineral trioxide aggregate (MTA) is an ideal yet costly endodontic sealer material. Tricalcium silicate-white Portland cement (TS-WPC) seems to have similar characteristics to those of MTA. This work aims to characterize a modified TS-WPC and evaluate its antibacterial properties as a potential endodontic sealer material. The modified TS-WPC was synthesized from a 4:1 mixture of sterilized Indocement TS-WPC and bismuth trioxide using a simple solution method with 99.9% isopropanol. The mixture was stirred until it was homogenous, centrifuged, and dried. The material was then characterized using infrared spectroscopy, X-ray diffraction, and electron microscopy and subjected to antibacterial evaluation against Enterococcus faecalis using a Mueller-Hinton agar inhibition test. The results showed that the material was characterized by main functional groups of hydroxyls, silicate, bismuth trioxide, and tricalcium silicate, like those of a commercial MTA-based sealer, both tested after hydration. Modified TS-WPC before hydration showed similar powder morphology and size to the commercial one, indicating the ease of manipulation. Both materials exhibited antibacterial activity due to calcium dihydroxide's ability to absorb carbon dioxide, which is essential for the anaerobic E. faecalis, with minimum inhibitory effect and bactericidal concentrations of 12,500 ppm and 25,000 ppm, respectively. The modified TS-WPC has the potential to become a cost-effective alternative endodontic sealer material.

SELECTION OF CITATIONS
SEARCH DETAIL
...