Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Gerontology ; 70(4): 390-407, 2024.
Article in English | MEDLINE | ID: mdl-38246133

ABSTRACT

INTRODUCTION: The longevity is influenced by genetic, environmental, and lifestyle factors. The specific changes that occur in the gut microbiome during the aging process, and their relationship to longevity and immune function, have not yet been fully understood. The ongoing research of other microbiome based on longevity cohort in Kazakhstan provides preliminary information on longevity-related aging, where cytokine expression is associated with specific microbial communities and microbial functions. METHODS: Metagenomic shotgun sequencing study of 40 long-lived individuals aged 90 years and over was carried out, who were conditionally healthy and active, able to serve themselves, without a history of serious infection and cancer, who had not taken any antimicrobials, including probiotics. Blood serum was analyzed for clinical and laboratory characteristics. The cytokine and chemokine profile in serum and stool samples was assessed using multiplex analysis. RESULTS: We found a significant increase in the expression of pro-inflammatory cytokines IL-1a, IL-6, 12p70, IP-10, IFNα2, IL-15, TNFa, as well as chemokines MIP-1a/CCL3 and MIP-1b/CCL4, chemokine motif ligands MCP-3/CCL7 and MDC/CCL22(1c). Nonagenerians and centenarians demonstrated a greater diversity of core microbiota genera and showed an elevated prevalence of the genera Bacteroides, Clostridium, Escherichia, and Alistipes. Conversely, there was a decrease in the abundance of the genera Ruminococcus, Fusicatenibacter, Dorea, as well as the species Fusicatenibacter saccharivorans. Furthermore, functional analysis revealed that the microbiome in long-lived group has a high capacity for lipid metabolism, amino acid degradation, and potential signs of chronic inflammatory status. CONCLUSION: Long-lived individuals exhibit an immune system imbalance and observed changes in the composition of the gut microbiota at the genus level between to the two age-groups. Age-related changes in the gut microbiome, metabolic functions of the microbial community, and chronic inflammation all contribute to immunosenescence. In turn, the inflammatory state and microbial composition of the gut is related to nutritional status.


Subject(s)
Metagenome , Microbiota , Aged, 80 and over , Humans , Aging , Longevity , Cytokines
2.
Biomed Res Int ; 2022: 3851478, 2022.
Article in English | MEDLINE | ID: mdl-35132375

ABSTRACT

Ulcerative colitis is an inflammatory bowel disease that forms ulcerations in the mucous membrane of the colon and rectum, in which gut microbiota plays a pivotal role in its pathogenesis. Agents modulating microbial dysbiosis caused by colitis can help in the remission of this disease. The current study describes the potential therapeutic effects of active metabolites from Lactobacillus rhamnosus and mare's milk which have potential therapeutic values on the intestinal microbiota and proinflammatory cytokines. The analysis of the V1-V3 16S rDNA site revealed significant changes in the intestinal microbiome composition before and after treatment in the treated group compared to the positive control group that was treated with 5-aminosalicylic acid (5-ASA). So the effect of the study product on dextran sulfate sodium-induced dysbiosis was shown to be more potent than the positive control, 5-ASA. The level of proinflammatory cytokines also decreased under the influence of a biological product.


Subject(s)
Colitis, Ulcerative/drug therapy , Dysbiosis/drug therapy , Gastrointestinal Microbiome/drug effects , Lacticaseibacillus rhamnosus/metabolism , Milk/metabolism , Animals , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/microbiology , Cytokines/metabolism , Dextran Sulfate , Disease Models, Animal , Horses , Mesalamine/pharmacology , Rats , Rats, Wistar
3.
ScientificWorldJournal ; 2022: 8824275, 2022.
Article in English | MEDLINE | ID: mdl-35153629

ABSTRACT

The purposes of this study were to research immune system changes and liver and lung tissues in irradiated rats after prolonged exposure to coal dust. A study was carried out on 30 male Wistar rats that were divided into 3 groups: group I, intact animals; group II, exposure to coal dust and 0.2 Gy γ-irradiation; and group III, combined exposure to 6 Gy γ-irradiation and coal dust. The combination of a low and sublethal dose of γ-irradiation with coal dust leads to a significant change in immunity at the remote period. Particularly, the increase in radioactivity at the combined effect causes weakening of phagocytosis, and reduction in T lymphocytes by a factor of 2, immunoglobulin imbalance, and cytokine dysfunction develop secondary immune failure. During prolonged inhalation with coal dust of irradiated animals with the dose of 0.2 Gy, fibrosis and perivascular sclerosis of the bronchial wall of the lungs are formed, and perivascular fibrosis is formed in the liver. The increase in exposure dose up to 6 Gy in combination with coal, in the distant period, caused pulmonary hypertension amid hypertrophy of light arterial vessels and fibrous changes in arteriole, and destructive changes and collection necrosis develop in liver parenchyma. In the case of dust radiation synergy, the increase in doses leads to a significant immune deficiency, which occurs according to the "dose effect" principle; increases damage to animal tissues; and leads to liver tissue necrosis, pulmonary fibrosis, and pulmonary hypertension.


Subject(s)
Coal , Gamma Rays/adverse effects , Inhalation Exposure/adverse effects , Particulate Matter/toxicity , Animals , Liver/drug effects , Liver/radiation effects , Lung/drug effects , Lung/radiation effects , Male , Rats , Rats, Wistar , T-Lymphocytes/drug effects , T-Lymphocytes/radiation effects
4.
Front Pharmacol ; 12: 687763, 2021.
Article in English | MEDLINE | ID: mdl-34616291

ABSTRACT

The aim of this study is determine the in vitro and in vivo antiradical properties and the cytoprotective activity of Allium nutans L. honey extract. The antiradical properties of the extracts were investigated in rabbit alveolar macrophages and human foreskin fibroblast (hFFs) cells in the presence of doxorubicin, a cytotoxic substance using DPPH and ABTS assays. The cytoprotective activities were determined using 18 Wistar rats divided into three different groups, a negative control, and two other groups with experimentally induced hepatotoxicity by a single intraperitoneal injection of 50% carbon tetrachloride (CCl4) oil solution. A positive control group, received drinking water only and an experimental group that was treated with Allium nutans L. honey extracts for 7 days. In vitro treatment with Allium nutans L. honey extracts resulted in 78% reduction in radical activity in DPPH and 91.6% inhibition using the ABTS. Also, honey extracts were able to preserve 100% of cell viability in the presence of the cytotoxic, doxorubicin. Furthermore, the treatment with honey extracts resulted in a significant reduction in damage to the structure of liver tissue, as well significant reduction in the levels of ALT and AST in the experimental group compared to the control group.

5.
Front Cell Infect Microbiol ; 11: 622735, 2021.
Article in English | MEDLINE | ID: mdl-33968795

ABSTRACT

Introduction: Probiotics and prebiotics are widely used for recovery of the human gut microbiome after antibiotic treatment. High antibiotic usage is especially common in children with developing microbiome. We hypothesized that dry Mare's milk, which is rich in biologically active substances without containing live bacteria, could be used as a prebiotic in promoting microbial diversity following antibiotic treatment in children. The present pilot study aims to determine the impacts of dry Mare's milk on the diversity of gut bacterial communities when administered during antibiotic treatment and throughout the subsequent recovery phase. Methods: Six children aged 4 to 5 years and diagnosed with bilateral bronchopneumonia were prescribed cephalosporin antibiotics. During the 60 days of the study, three children consumed dry Mare's milk whereas the other three did not. Fecal samples were collected daily during antibiotic therapy and every 5 days after antibiotic therapy. Total DNA was isolated and taxonomic composition of gut microbiota was analyzed by 16S rRNA amplicon sequencing. To assess the immune status of the gut, stool samples were analyzed by bead-based multiplex assays. Results: Mare's milk treatment seems to prevent the bloom of Mollicutes, while preventing the loss of Coriobacteriales. Immunological analysis of the stool reveals an effect of Mare's milk on local immune parameters under the present conditions.


Subject(s)
Microbiota , Milk , Animals , Anti-Bacterial Agents , Child , Female , Horses , Humans , Pilot Projects , RNA, Ribosomal, 16S/genetics
6.
Front Immunol ; 11: 571319, 2020.
Article in English | MEDLINE | ID: mdl-33117362

ABSTRACT

Background: Psoriasis is a chronic inflammatory condition that predominantly affects the skin and is associated with extracutaneous disorders, such as inflammatory bowel disease and arthritis. Changes in gut immunology and microbiota are important drivers of proinflammatory disorders and could play a role in the pathogenesis of psoriasis. Therefore, we explored whether psoriasis in a Central Asian cohort is associated with alterations in select immunological markers and/or microbiota of the gut. Methods: We undertook a case-control study of stool samples collected from outpatients, aged 30-45 years, of a dermatology clinic in Kazakhstan presenting with plaque, guttate, or palmoplantar psoriasis (n = 20), and age-sex matched subjects without psoriasis (n = 20). Stool supernatant was subjected to multiplex ELISA to assess the concentration of 47 cytokines and immunoglobulins and to 16S rRNA gene sequencing to characterize microbial diversity in both psoriasis participants and controls. Results: The psoriasis group tended to have higher concentrations of most analytes in stool (29/47 = 61.7%) and gut IL-1α was significantly elevated (4.19-fold, p = 0.007) compared to controls. Levels of gut IL-1α in the psoriasis participants remained significantly unaltered up to 3 months after the first sampling (p = 0.430). Psoriasis was associated with alterations in gut Firmicutes, including elevated Faecalibacterium and decreased Oscillibacter and Roseburia abundance, but no association was observed between gut microbial diversity or Firmicutes/Bacteroidetes ratios and disease status. Conclusions: Psoriasis may be associated with gut inflammation and dysbiosis. Studies are warranted to explore the use of gut microbiome-focused therapies in the management of psoriasis in this under-studied population.


Subject(s)
Dysbiosis/immunology , Gastrointestinal Microbiome/immunology , Interleukin-1alpha/metabolism , Intestines/immunology , Psoriasis/immunology , Skin/pathology , Adult , Case-Control Studies , Cohort Studies , Cytokines/metabolism , Female , Gastrointestinal Microbiome/genetics , Humans , Intestines/microbiology , Kazakhstan , Male , Middle Aged , RNA, Ribosomal, 16S/genetics
7.
Sci Rep ; 10(1): 14720, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32895481

ABSTRACT

Doxorubicin is a chemotherapeutic agent known to cause cardiotoxicity that is thought to be associated with oxidative stress. The aim of the current study is to investigate the role of grape polyphenols' antioxidant property as cardioprotective against doxorubicin-induced cardiotoxicity. Adult Wistar rats weighing 200 ± 20 g were divided into 3 different groups: a doxorubicin group that received a single intraperitoneal administration of doxorubicin (8.0 mg/kg body weight), an experimental group that received doxorubicin and grape polyphenol concentrate (25 mg/kg) via intragastric route, and the third group was a negative control group that received water only. On day 8, blood samples and tissues were harvested for analyses. The results indicated that grape polyphenol concentrate was able to reduce the signs of cardiotoxicity of doxorubicin through the reduction of aspartate aminotransferase activation, increasing the plasma antioxidant levels and decreasing the level of free radicals. The results also showed that grape polyphenol concentrate was able to reverse doxorubicin-induced microscopic myocardial damage. The myocardial protective effect of grape polyphenol might likely be due to the increase in the level and activity of the antioxidant enzymes, superoxide dismutase, catalase, and glutathione peroxidase. In conclusion, grape polyphenol concentrate displayed cardioprotective effect and was able to reverse doxorubicin-induced-cardiomyopathy in experimental rats.


Subject(s)
Cardiotoxicity/drug therapy , Doxorubicin/adverse effects , Grape Seed Extract/pharmacology , Heart/drug effects , Polyphenols/pharmacology , Protective Agents/pharmacology , Vitis/chemistry , Animals , Antioxidants/pharmacology , Cardiotoxicity/metabolism , Cardiotoxins/adverse effects , Catalase/metabolism , Glutathione Peroxidase/metabolism , Myocardium/metabolism , Oxidative Stress/drug effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...