Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Food Microbiol ; 377: 109786, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-35716582

ABSTRACT

Ready-to-eat (RTE) leafy greens are popular products that unfortunately have been associated with numerous foodborne illness outbreaks. Since the influence of consumer practices is essential for their quality and safety, the objective of this study was to analyze the microbiota of RTE products throughout shelf life during simulated household conditions. Products from different companies were analyzed in terms of plate counts, and resealed and unopened packages were compared. High bacterial loads were found, up to a total plate count of 9.6 log10 CFU/g, and Enterobacteriaceae plate counts up to 6.0 CFU/g on the expiration date. The effect of consumer practice varied, thus no conclusions regarding resealed or unopened bags could be drawn. The tested products contained opportunistic pathogens, such as Enterobacter homaechei, Hafnia paralvei and Pantoea agglomerans. Amplicon sequencing revealed that the relative abundance of major taxonomic groups changed during shelf life; Pseudomonadaceae and Xanthomonadaceae decreased, while Flavobacteriaceae and Marinomonadaceae inceased. Inoculation with E. coli CCUG 29300T showed that the relative abundance of Escherichia-Shigella was lower on rocket than on other tested leafy greens. Inoculation with E. coli strain 921 indicate growth at the beginning of shelf-life time, while E. coli 731 increases at the end, seemingly able to adapt to cold storage conditions. The high levels of live microorganisms, the detection of opportunistic pathogens, and the ability of E. coli strains to grow at refrigeration temperature raise concerns and indicate that the shelf life may be shortened to achieve a safer product. Due to variations between products, further studies are needed to define how long the shelf-life of these products should be, to ensure a safe product even at the end of the shelf-life period.


Subject(s)
Escherichia coli , Microbiota , Bacterial Load , Colony Count, Microbial , Food Contamination , Food Microbiology , Vegetables/microbiology
2.
Sci Rep ; 12(1): 6518, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35444249

ABSTRACT

Urbanization reduces microbiological abundance and diversity, which has been associated with immune mediated diseases. Urban greening may be used as a prophylactic method to restore microbiological diversity in cities and among urbanites. This study evaluated the impact of air-circulating green walls on bacterial abundance and diversity on human skin, and on immune responses determined by blood cytokine measurements. Human subjects working in offices in two Finnish cities (Lahti and Tampere) participated in a two-week intervention, where green walls were installed in the rooms of the experimental group. Control group worked without green walls. Skin and blood samples were collected before (Day0), during (Day14) and two weeks after (Day28) the intervention. The relative abundance of genus Lactobacillus and the Shannon diversity of phylum Proteobacteria and class Gammaproteobacteria increased in the experimental group. Proteobacterial diversity was connected to the lower proinflammatory cytokine IL-17A level among participants in Lahti. In addition, the change in TGF-ß1 levels was opposite between the experimental and control group. As skin Lactobacillus and the diversity of Proteobacteria and Gammaproteobacteria are considered advantageous for skin health, air-circulating green walls may induce beneficial changes in a human microbiome. The immunomodulatory potential of air-circulating green walls deserves further research attention.


Subject(s)
Microbiota , Bacteria , Cytokines , Humans , Lactobacillus , Skin
3.
Epidemiol Infect ; 147: e90, 2019 01.
Article in English | MEDLINE | ID: mdl-30869004

ABSTRACT

Enteric pathogens have been related to child undernutrition. Whereas there are lots of data on enteric bacterial microbiota and infections, much less is known about the incidence of prevalence of intestinal colonisation with viruses or important parasitic species. This study assessed the presence of selected viruses and parasites in stools of 469, 354, 468 Malawian children at 6, 12 and 18 months. We also assessed environmental predictors of the presence of viruses and parasites among 6-month infants. Microbial presence was documented using real-time polymerase chain reaction (PCR). Enteroviruses were identified in 68%, 80% and 81% of the stool samples at 6, 12 and 18 months children, rhinovirus in 28%, 18% and 31%, norovirus in 24%, 22% and 16%, parechovirus in 23%, 17% and 17%, rotavirus in 3%, 1% and 0.6%, Giardia lamblia in 9.6%, 23.5% and 26%, and Cryptosporidium (spp.) in 6%, 8% and 2% of the 6, 12 and 18 months stool samples. Dry season (May-October) was associated with a low infection rate of enterovirus, norovirus and Cryptosporidium (spp.). Higher father's education level, less number of person in the household and higher sanitation were associated with a low infection rate of enterovirus, norovirus and rotavirus, respectively. The results suggest that the prevalence of asymptomatic viral and parasitic infections is high among Malawian children and that the family's living conditions and seasonality influence the rate of infections.


Subject(s)
Parasitic Diseases/epidemiology , Rural Population/statistics & numerical data , Virus Diseases/epidemiology , Cross-Sectional Studies , Female , Humans , Infant , Malawi/epidemiology , Male , Parasitic Diseases/parasitology , Prevalence , Virus Diseases/virology
4.
Stud Health Technol Inform ; 120: 205-16, 2006.
Article in English | MEDLINE | ID: mdl-16823139

ABSTRACT

A trend in modern medicine is towards individualization of healthcare and, potentially, grid computing can play an important role in this by allowing sharing of resources and expertise to improve the quality of care. In this paper, we present a new test bed, the BIOPATTERN Grid, which aims to fulfil this role in the long term. The main objectives in this paper are 1) to report the development of the BIOPATTERN Grid, for biopattern analysis and bioprofiling in support of individualization of healthcare. The BIOPATTERN Grid is designed to facilitate secure and seamless sharing of geographically distributed bioprofile databases and to support the analysis of bioprofiles to combat major diseases such as brain diseases and cancer within a major EU project, BIOPATTERN (www.biopattern.org); 2) to illustrate how the BIOPATTERN Grid could be used for biopattern analysis and bioprofiling for early detection of dementia and for brain injury assessment on an individual basis. We highlight important issues that would arise from the mobility of citizens in the EU, such as those associated with access to medical data, ethical and security; and 3) to describe two grid services which aim to integrate BIOPATTERN Grid with existing grid projects on crawling service and remote data acquisition which is necessary to underpin the use of the test bed for biopattern analysis and bioprofiling.


Subject(s)
Computational Biology/organization & administration , Information Storage and Retrieval , Internet , Software , Europe
5.
Ann N Y Acad Sci ; 911: 369-91, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10911886

ABSTRACT

Recent anterograde and retrograde studies in the rat have provided detailed information on the origin and termination of the interconnections between the amygdaloid complex and the hippocampal formation and parahippocampal areas (including areas 35 and 36 of the perirhinal cortex and the postrhinal cortex). The most substantial inputs to the amygdala originate in the rostral half of the entorhinal cortex, the temporal end of the CA1 subfield and subiculum, and areas 35 and 36 of the perirhinal cortex. The amygdaloid nuclei receiving the heaviest inputs are the lateral, basal, accessory basal, and central nuclei as well as the amygdalohippocampal area. The heaviest projections from the amygdala to the hippocampal formation and the parahippocampal areas originate in the lateral, basal, accessory basal, and posterior cortical nuclei. These pathways terminate in the rostral half of the entorhinal cortex, the temporal end of the CA3 and CA1 subfields or the subiculum, the parasubiculum, areas 35 and 36 of the perirhinal cortex, and the postrhinal cortex. The connectional data are summarized and the underlying principles of organization of these projections are discussed.


Subject(s)
Amygdala/physiology , Hippocampus/physiology , Neural Pathways/physiology , Parahippocampal Gyrus/physiology , Animals , Brain Mapping , Humans
6.
Neuroscience ; 94(3): 735-43, 1999.
Article in English | MEDLINE | ID: mdl-10579564

ABSTRACT

Oscillations in neuronal networks are assumed to serve various physiological functions, from coordination of motor patterns to perceptual binding of sensory information. Here, we describe an ultra-slow oscillation (0.025 Hz) in the hippocampus. Extracellular and intracellular activity was recorded from the CA1 and subicular regions in rats of the Wistar and Sprague-Dawley strains, anesthetized with urethane. In a subgroup of Wistar rats (23%), spontaneous afterdischarges (4.7+/-1.6 s) occurred regularly at 40.8+/-15.7 s. The afterdischarge was initiated by a fast increase of population synchrony (100-250 Hz oscillation; "tonic" phase), followed by large-amplitude rhythmic waves and associated action potentials at gamma and beta frequency (15-50 Hz; "clonic" phase). The afterdischarges were bilaterally synchronous and terminated relatively abruptly without post-ictal depression. Single-pulse stimulation of the commissural input could trigger afterdischarges, but only at times when they were about to occur. Commissural stimulation evoked inhibitory postsynaptic potentials in pyramidal cells. However, when the stimulus triggered an afterdischarge, the inhibitory postsynaptic potential was absent and the cells remained depolarized during most of the afterdischarge. Afterdischarges were not observed in the Sprague-Dawley rats. Long-term analysis of interneuronal activity in intact, drug-free rats also revealed periodic excitability changes in the hippocampal network at 0.025 Hz. These findings indicate the presence of an ultra-slow oscillation in the hippocampal formation. The ultra-slow clock induced afterdischarges in susceptible animals. We hypothesize that a transient failure of GABAergic inhibition in a subset of Wistar rats is responsible for the emergence of epileptiform patterns.


Subject(s)
Hippocampus/physiology , Pyramidal Cells/physiology , Rats, Wistar/physiology , Animals , Electric Stimulation , Evoked Potentials , Membrane Potentials , Motor Activity/physiology , Nerve Net/physiology , Oscillometry , Rats , Rats, Sprague-Dawley/physiology , Species Specificity , Theta Rhythm
SELECTION OF CITATIONS
SEARCH DETAIL
...