Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 35(20)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38330490

ABSTRACT

This work reports on the design and synthesis of an angiotensin-converting enzyme 2 (ACE-2) functionalized magnetic fluorescent silica nanoparticles (Fe-FSNP) as a biosensing platform to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen. Iron oxide (Fe3O4) nanoparticles were synthesized via ultrasonic-assisted coprecipitation and then coated with fluorescent silica nanoparticles (FSNP) through thesol-gelmethod forming the Fe-FSNP samples. Silica obtained from local geothermal powerplant was used in this work and Rhodamine B was chosen as the incorporated fluorescent dye, hence this reports for the first time ACE-2 was immobilized on the natural silica surface. The Fe-FSNP nanoparticle consists of a 18-25 nm magnetic core and a silica shell with a thickness of 30 nm as confirmed from the transmission electron microscopy image. Successful surface functionalization of the Fe-FSNP with ACE-2 as bioreceptor was conducted through hydrosylilation reaction and confirmed through the Fourier transform infrared spectroscopy. The detection of SARS-Cov-2 antigen by Fe-FSNP/ACE2 was measured through the change in its maximum fluorescence intensity at 588 nm where fluorescence- quenching had occurred. The biosensing platform showed a rapid response at 30 min with a linear range of 10-6to 10-2µg ml-1. The magnetic-fluorescent properties of the nanoparticle enables an ultra-sensitive detection of SARS-Cov-2 antigen with the limit of detection as low as 2 fg ml-1.


Subject(s)
Biosensing Techniques , COVID-19 , Nanoparticles , Humans , SARS-CoV-2 , COVID-19/diagnosis , Angiotensin-Converting Enzyme 2 , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Biosensing Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...