Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
MethodsX ; 6: 1591-1599, 2019.
Article in English | MEDLINE | ID: mdl-31321213

ABSTRACT

Currently, the available indices to measure mangrove health are not comprehensive. An integrative ecological-socio economic index could give a better picture of the mangrove ecosystem health. This method explored all key biological, hydrological, ecological and socio-economic variables to form a comprehensive mangrove quality index. A total of 10 out of 43 variables were selected based on principal component analysis (PCA). They are aboveground biomass, crab abundance, soil carbon, soil nitrogen, number of phytoplankton species, number of diatom species, dissolved oxygen, turbidity, education level and fishing time spent by fishers. Two types of indices were successfully developed to indicate the health status viz., (1) Mangrove quality index for a specific category (MQISi ) and, (2) Overall mangrove quality index (MQI) to reflect the overall health status of the ecosystem. The indices for the five different categories were mangrove biotic integrity index ( M Q I S 1 ), mangrove soil index ( M Q I S 2 ), marine-mangrove index ( M Q I S 3 ), mangrove-hydrology index ( M Q I S 4 ) and mangrove socio-economic index ( M Q I S 5 ). The quality of the mangroves was classified from 1 to 5 viz. 1 (worst), 2 (bad), 3 (moderate), 4 (good), 5 (excellent). These MQI class could reflect the quality of mangrove forest which could be managed with the objective of improving its quality. Advantages of this method include: •PCA to select metrics from ecological-socioeconomic variables•Formulation of MQI based on selected metrics•Comprehensive index to classify mangrove ecosystem health.

2.
Sensors (Basel) ; 14(5): 8259-82, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24811079

ABSTRACT

Various classification methods have been applied for low resolution of the entire Earth's surface from recorded satellite images, but insufficient study has determined which method, for which satellite data, is economically viable for tropical forest land use mapping. This study employed Iterative Self Organizing Data Analysis Techniques (ISODATA) and K-Means classification techniques to classified Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance satellite image into forests, oil palm groves, rubber plantations, mixed horticulture, mixed oil palm and rubber and mixed forest and rubber. Even though frequent cloud cover has been a challenge for mapping tropical forests, our MODIS land use classification map found that 2008 ISODATA-1 performed well with overall accuracy of 94%, with the highest Producer's Accuracy of Forest with 86%, and were consistent with MODIS Land Cover 2008 (MOD12Q1), respectively. The MODIS land use classification was able to distinguish young oil palm groves from open areas, rubber and mature oil palm plantations, on the Advanced Land Observing Satellite (ALOS) map, whereas rubber was more easily distinguished from an open area than from mixed rubber and forest. This study provides insight on the potential for integrating regional databases and temporal MODIS data, in order to map land use in tropical forest regions.


Subject(s)
Environmental Monitoring/methods , Forests , Photography/methods , Spacecraft , Spectrum Analysis/methods , Malaysia , Systems Integration , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...