Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Pathog ; 158: 105062, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34186116

ABSTRACT

One of the major factors that affect the total production of fisheries is the declining number of catches and aquaculture production due to the high pathogenicity in aquatic environment. This enforces the need to find anti-pathogenic agents that could solve the problem. In addition, the application of potential Bacillus cereus SN7 and Vagococcus fluvialis CT21 isolated and identified from the sea water of Siak, Riau, Indonesia need to be optimally exploited. The aim of this study, therefore, is to determine the component of bioactive compounds present in Bacillus cereus SN7 and Vagococcus fluvialis CT21, and also to explore their intrinsic potential as a biological control agent in fisheries, especially for inhibiting the growth of pathogenic bacteria (Vibrio alginolyticus, Aeromonas hydrophila and Pseudomonas aeruginosa). The method used was experimental, where the ethyl acetate crude extracts of both samples were analyzed for their phytochemical content, followed by thin layer chromatography analysis and Liquid Chromatography Mass Spectrometry. In addition, anti-pathogenic activity test was performed using the Kirby-Bauer method, minimum inhibitory and bactericidal concentration analysis. The results showed alkaloids, flavonoids, and saponins were the potential bioactive components in the crude extracts of Bacillus cereus SN7 and Vagococcus fluvialis CT21. Furthermore, the anti-pathogenic activity test demonstrated the ability for both bacteria to inhibit three types of pathogens with the following inhibitory zone values: Vibrio alginolyticus (10-11 mm), Aeromonas hydrophila (8-12 mm), and Pseudomonas aeruginosa (8-10 mm). In conclusion secondary metabolite compounds produced by Bacillus cereus SN7 and Vagococcus fluvialis CT21 possess the capacity to inhibit pathogenic bacteria. Hence, both samples are potential candidates for anti-pathogen development, especially in fisheries.


Subject(s)
Bacillus cereus , Enterococcaceae , Animals , Anti-Bacterial Agents/pharmacology , Fishes , Microbial Sensitivity Tests , Pseudomonas aeruginosa
2.
Environ Sci Pollut Res Int ; 21(18): 10725-35, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24888608

ABSTRACT

The disposal of hazardous crude oil tank bottom sludge (COTBS) represents a significant waste management burden for South Mediterranean countries. Currently, the application of biological systems (bioremediation) for the treatment of COTBS is not widely practiced in these countries. Therefore, this study aims to develop the potential for bioremediation in this region through assessment of the abilities of indigenous hydrocarbonoclastic microorganisms from Libyan Hamada COTBS for the biotreatment of Libyan COTBS-contaminated environments. Bacteria were isolated from COTBS, COTBS-contaminated soil, treated COTBS-contaminated soil, and uncontaminated soil using Bushnell Hass medium amended with Hamada crude oil (1 %) as the main carbon source. Overall, 49 bacterial phenotypes were detected, and their individual abilities to degrade Hamada crude and selected COBTS fractions (naphthalene, phenanthrene, eicosane, octadecane and hexane) were evaluated using MT2 Biolog plates. Analyses using average well colour development showed that ~90 % of bacterial isolates were capable of utilizing representative aromatic fractions compared to 51 % utilization of representative aliphatics. Interestingly, more hydrocarbonoclastic isolates were obtained from treated contaminated soils (42.9 %) than from COTBS (26.5 %) or COTBS-contaminated (30.6 %) and control (0 %) soils. Hierarchical cluster analysis (HCA) separated the isolates into two clusters with microorganisms in cluster 2 being 1.7- to 5-fold better at hydrocarbon degradation than those in cluster 1. Cluster 2 isolates belonged to the putative hydrocarbon-degrading genera; Pseudomonas, Bacillus, Arthrobacter and Brevundimonas with 57 % of these isolates being obtained from treated COTBS-contaminated soil. Overall, this study demonstrates that the potential for PAH degradation exists for the bioremediation of Hamada COTBS-contaminated environments in Libya. This represents the first report on the isolation of hydrocarbonoclastic bacteria from Libyan COTBS and COTBS-contaminated soil.


Subject(s)
Bacteria/isolation & purification , Bacteria/metabolism , Hydrocarbons/metabolism , Petroleum/microbiology , Sewage/microbiology , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Biodegradation, Environmental , Libya , Petroleum/analysis , Phylogeny , Soil Pollutants/analysis , Soil Pollutants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...