Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Chem ; 10(11): 1083-1088, 2018 11.
Article in English | MEDLINE | ID: mdl-30202101

ABSTRACT

The simultaneous synthesis of a molecular nine-crossing composite knot that contains three trefoil tangles of the same handedness and a [Formula: see text] link (a type of cyclic [3]catenane topologically constrained to always have at least three twists within the links) is reported. Both compounds contain high degrees of topological writhe (w = 9), a structural feature of supercoiled DNA. The entwined products are generated from the cyclization of a hexameric Fe(II) circular helicate by ring-closing olefin metathesis, with the mixture of topological isomers formed as a result of different ligand connectivity patterns. The metal-coordinated composite knot was isolated by crystallization, the topology unambiguously proven by tandem mass spectrometry, with X-ray crystallography confirming that the 324-atom loop crosses itself nine times with matching handedness (all Δ or all Λ) at every metal centre within each molecule. Controlling the connectivity of the ligand end groups on circular metal helicate scaffolds provides an effective synthetic strategy for the stereoselective synthesis of composite knots and other complex molecular topologies.

2.
Science ; 352(6293): 1555-9, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27339983

ABSTRACT

Molecular knots occur in DNA, proteins, and other macromolecules. However, the benefits that can potentially arise from tying molecules in knots are, for the most part, unclear. Here, we report on a synthetic molecular pentafoil knot that allosterically initiates or regulates catalyzed chemical reactions by controlling the in situ generation of a carbocation formed through the knot-promoted cleavage of a carbon-halogen bond. The knot architecture is crucial to this function because it restricts the conformations that the molecular chain can adopt and prevents the formation of catalytically inactive species upon metal ion binding. Unknotted analogs are not catalytically active. Our results suggest that knotting molecules may be a useful strategy for reducing the degrees of freedom of flexible chains, enabling them to adopt what are otherwise thermodynamically inaccessible functional conformations.

5.
Bioconjug Chem ; 25(10): 1785-93, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25186936

ABSTRACT

Double stranded DNA hybrids containing up to four consecutive, face-to-face stacked porphyrins are described. Non-nucleosidic, 5,15-bisphenyl-substituted porphyrin building blocks were incorporated into complementary oligonucleotide strands. Upon hybridization multiple porphyrins are well accommodated inside the DNA scaffold without disturbing the overall B-DNA structure. The formation of double strands containing up to four free base porphyrins is enabled without compromising duplex stability. UV/vis, fluorescence, and CD spectroscopy demonstrate the formation of porphyrins H-aggregates inside the DNA double helix and provide evidence for the existence of strong excitonic coupling between interstrand stacked porphyrins. H-aggregation results in considerable fluorescence quenching. Most intense CD effects are observed in stacks containing four porphyrins. The findings demonstrate the value of DNA for the controlled formation of molecularly defined porphyrin aggregates.


Subject(s)
DNA/chemistry , Porphyrins/chemistry , Circular Dichroism , Fluorescence , Models, Molecular , Nucleic Acid Conformation , Nucleic Acid Hybridization
6.
J Am Chem Soc ; 136(13): 4905-8, 2014 Apr 02.
Article in English | MEDLINE | ID: mdl-24649824

ABSTRACT

A rotaxane-based switchable asymmetric organocatalyst has been synthesized in which the change of the position of the macrocycle reveals or conceals an acyclic, yet still highly effective, chiral organocatalytic group. This allows control over both the rate and stereochemical outcome of a catalyzed asymmetric Michael addition.


Subject(s)
Amines/chemistry , Rotaxanes/chemistry , Catalysis , Models, Molecular , Rotaxanes/chemical synthesis , Stereoisomerism
7.
J Phys Chem B ; 117(8): 2576-85, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23373477

ABSTRACT

We present a molecular modeling study based on ab initio and classical molecular dynamics calculations, for the investigation of the tridimensional structure and supramolecular assembly formation of heptapyrenotide oligomers in water solution. Our calculations show that free oligomers self-assemble in helical structures characterized by an inner core formed by π-stacked pyrene units, and external grooves formed by the linker moieties. The coiling of the linkers has high ordering, dominated by hydrogen-bond interactions among the phosphate and amide groups. Our models support a mechanism of longitudinal supramolecular oligomerization based on interstrand pyrene intercalation. Only a minimal number of pyrene units intercalate at one end, favoring formation of very extended longitudinal chains, as also detected by AFM experiment. Our results provide a structural explanation of the mechanism of chirality amplification in 1:1 mixtures of standard heptapyrenotides and modified oligomers with covalently linked deoxycytidine, based on selective molecular recognition and binding of the nucleotide to the groove of the left-wound helix.

8.
Org Biomol Chem ; 10(25): 4891-8, 2012 Jul 07.
Article in English | MEDLINE | ID: mdl-22610059

ABSTRACT

Amphiphilic heptapyrenotides (Py(7)) assemble into supramolecular polymers. Here we present a comprehensive spectroscopic study of aggregates and co-aggregates of the non-chiral Py(7) and its mono- or di-substituted nucleotide analogs (Py(7)-N and N-Py(7)-N'). The data show that the formation of supramolecular polymers from oligopyrenotides is highly sensitive to the nature of the attached, chiral auxiliary. A single natural nucleotide may be sufficient for the fine tuning of the aggregates' properties by changing the mechanism of aggregation from an isodesmic to a nucleation-elongation process, which results in a high degree of amplification of chirality in the formed supramolecular polymers. Watson-Crick complementarity does not play a significant role, since co-aggregates of oligomers modified with complementary nucleotides show no signs of supramolecular polymerization. Depending on the nucleotide, the helical sense of the polymers is shifted to an M-helix or a P-helix. The findings demonstrate the value of oligopyrenotides as oligomeric building blocks for the generation of optically active supramolecular polymers.


Subject(s)
Nucleotides/chemistry , Pyrenes/chemistry , Adenosine/chemistry , Biological Products/chemistry , Cytidine/chemistry , Molecular Structure , Polymerization , Stereoisomerism
9.
Angew Chem Int Ed Engl ; 51(20): 4905-8, 2012 May 14.
Article in English | MEDLINE | ID: mdl-22492542

ABSTRACT

Getting organized: DNA-like supramolecular polymers formed of short oligopyrenotides serve as a helical scaffold for the molecular assembly of ligands. The cationic porphyrin meso-tetrakis(1-methylpyridin-4-yl)porphyrin interacts with the helical polymers in a similar way as with poly(dA:dT).


Subject(s)
Nanostructures/chemistry , Pyrenes/chemistry , Circular Dichroism , Molecular Conformation , Nanotechnology , Nucleic Acid Conformation , Poly C/chemistry , Poly G/chemistry , Poly dA-dT/chemistry , Porphyrins/chemistry , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...