Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 12(3)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36978384

ABSTRACT

BACKGROUND: Antibiotic eye drops are frequently used in clinical practice. Due to the anatomical connection via the nasolacrimal duct, it seems possible that they have an influence on the nasal/pharyngeal microbiome. This was investigated by using two different commonly used antibiotic eye drops. METHODS: 20 subjects were randomized to four groups of five subjects receiving eye drops containing gentamicin, ciprofloxacin, or, as controls, unpreserved povidone or benzalkonium chloride-preserved povidone. Nasal and pharyngeal swabs were performed before and after the instillation period. Swabs were analyzed by Illumina next-generation sequencing (NGS)-based 16S rRNA analysis. Bacterial culture was performed on solid media, and bacterial isolates were identified to the species level by MALDI-TOF MS. Species-dependent antimicrobial susceptibility testing was performed using single isolates and pools of isolates. RESULTS: Bacterial richness in the nose increased numerically from 163 ± 30 to 243 ± 100 OTUs (gentamicin) and from 114 ± 17 to 144 ± 45 OTUs (ciprofloxacin). Phylogenetic diversity index (pd) of different bacterial strains in the nasal microbiome increased from 12.4 ± 1.0 to 16.9 ± 5.6 pd (gentamicin) and from 10.2 ± 1.4 to 11.8 ± 3.1 pd (ciprofloxacin). Unpreserved povidone eye drops resulted in minimal changes in bacterial counts. Preservative-containing povidone eye drops resulted in no change. A minor increase (1-2-fold) in the minimal inhibitory concentration (MIC) was observed in single streptococcal isolates. CONCLUSIONS: Antibiotic eye drops could affect the nasal microbiome. After an instillation period of seven days, an increase in the diversity and richness of bacterial strains in the nasal microbiome was observed.

2.
Clin Pharmacokinet ; 61(5): 697-707, 2022 05.
Article in English | MEDLINE | ID: mdl-34997559

ABSTRACT

BACKGROUND AND OBJECTIVE: In microdose studies, drug pharmacokinetics is measured in humans after administration of subtherapeutic doses. While previous microdose studies focused primarily on plasma pharmacokinetics, we set out to evaluate the feasibility of microdosing for a pharmacokinetic assessment in subcutaneous tissue and epithelial lining fluid. METHODS: Healthy subjects received a single intravenous bolus injection of a microdose of [14C]ciprofloxacin (1.1 µg, 7 kBq) with (cohort A, n = 9) or without (cohort B, n = 9) a prior intravenous infusion of a therapeutic dose of unlabeled ciprofloxacin (400 mg). Microdialysis and bronchoalveolar lavage were applied for determination of subcutaneous and intrapulmonary drug concentrations. Microdose [14C]ciprofloxacin was quantified by accelerator mass spectrometry and therapeutic-dose ciprofloxacin by liquid chromatography-tandem mass spectrometry. RESULTS: The pharmacokinetics of therapeutic-dose ciprofloxacin (cohort A) in plasma, subcutaneous tissue, and epithelial lining fluid was in accordance with previous data. In plasma and subcutaneous tissue, the dose-adjusted area under the concentration-time curve of microdose ciprofloxacin was similar in cohorts A and B and within an 0.8-fold to 1.1-fold range of the area under the concentration-time curve of therapeutic-dose ciprofloxacin. Penetration of microdose ciprofloxacin into subcutaneous tissue was similar in cohorts A and B and comparable to that of therapeutic-dose ciprofloxacin with subcutaneous tissue-to-plasma area under the concentration-time curve ratios of 0.44, 0.44, and 0.38, respectively. Penetration of microdose ciprofloxacin into epithelial lining fluid was highly variable and failed to predict the epithelial lining fluid penetration of therapeutic-dose ciprofloxacin. CONCLUSIONS: Our study confirms the feasibility of microdosing for pharmacokinetic measurements in plasma and subcutaneous tissue. Microdosing combined with microdialysis is a potentially useful tool in clinical antimicrobial drug development, but its applicability for the assessment of pulmonary pharmacokinetics with bronchoalveolar lavage requires further studies. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov NCT03177720 (registered 6 June, 2017).


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Area Under Curve , Dose-Response Relationship, Drug , Feasibility Studies , Humans , Pharmaceutical Preparations
SELECTION OF CITATIONS
SEARCH DETAIL
...