Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Appl Environ Microbiol ; 90(3): e0175023, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38349147

ABSTRACT

Phyllosphere microbial communities are increasingly experiencing intense pulse disturbance events such as drought. It is currently unknown how phyllosphere communities respond to such disturbances and if they are able to recover. We explored the stability of phyllosphere communities over time, in response to drought stress, and under recovery from drought on temperate forage grasses. Compositional or functional changes were observed during the disturbance period and whether communities returned to non-stressed levels following recovery. Here, we found that phyllosphere community composition shifts as a result of simulated drought but does not fully recover after irrigation is resumed and that the degree of community response to drought is host species dependent. However, while community composition had changed, we found a high level of functional stability (resistance) over time and in the water deficit treatment. Ecological modeling enabled us to understand community assembly processes over a growing season and to determine if they were disrupted during a disturbance event. Phyllosphere community succession was characterized by a strong level of ecological drift, but drought disturbance resulted in variable selection, or, in other words, communities were diverging due to differences in selective pressures. This successional divergence of communities with drought was unique for each host species. Understanding phyllosphere responses to environmental stresses is important as climate change-induced stresses are expected to reduce crop productivity and phyllosphere functioning. IMPORTANCE: Leaf surface microbiomes have the potential to influence agricultural and ecosystem productivity. We assessed their stability by determining composition, functional resistance, and resilience. Resistance is the degree to which communities remain unchanged as a result of disturbance, and resilience is the ability of a community to recover to pre-disturbance conditions. By understanding the mechanisms of community assembly and how they relate to the resistance and resilience of microbial communities under common environmental stresses such as drought, we can better understand how communities will adapt to a changing environment and how we can promote healthy agricultural microbiomes. In this study, phyllosphere compositional stability was highly related to plant host species phylogeny and, to a lesser extent, known stress tolerances. Phyllosphere community assembly and stability are a result of complex interactions of ecological processes that are differentially imposed by host species.


Subject(s)
Bacteria , Microbiota , Bacteria/genetics , Plants , Plant Leaves/microbiology , Host Specificity
2.
Microbiol Spectr ; 12(2): e0350823, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38236038

ABSTRACT

Trace elements are associated with the microbial degradation of organic matter and methanogenesis, as enzymes in metabolic pathways often employ trace elements as essential cofactors. However, only a few studies investigated the effects of trace elements on the metabolic activity of microbial communities associated with biogenic coalbed methane production. We aimed to determine the effects of strategically selected trace elements on structure and function of active bacterial and methanogenic communities to stimulate methane production in subsurface coalbeds. Microcosms were established with produced water and coal from coalbed methane wells located in the Powder River Basin, Wyoming, USA. In initial pilot experiments with eight different trace elements, individual amendments of Co, Cu, and Mo lead to significantly higher methane production. Transcript levels of mcrA, the key marker gene for methanogenesis, positively correlated with increased methane production. Phylogenetic analysis of the mcrA cDNA library demonstrated compositional shifts of the active methanogenic community and increase of their diversity, particularly of hydrogenotrophic methanogens. High-throughput sequencing of cDNA obtained from 16S rRNA demonstrated active and abundant bacterial groups in response to trace element amendments. Active Acetobacterium members increased in response to Co, Cu, and Mo additions. The findings of this study yield new insights into the importance of essential trace elements on the metabolic activity of microbial communities involved in subsurface coalbed methane and provide a better understanding of how microbial community composition is shaped by trace elements.IMPORTANCEMicrobial life in the deep subsurface of coal beds is limited by nutrient replenishment. While coal bed microbial communities are surrounded by carbon sources, we hypothesized that other nutrients such as trace elements needed as cofactors for enzymes are missing. Amendment of selected trace elements resulted in compositional shifts of the active methanogenic and bacterial communities and correlated with higher transcript levels of mcrA. The findings of this study yield new insights to not only identify possible limitations of microbes by replenishment of trace elements within their specific hydrological placement but also into the importance of essential trace elements for the metabolic activity of microbial communities involved in subsurface coalbed methane production and provides a better understanding of how microbial community composition is shaped by trace elements. Furthermore, this finding might help to revive already spent coal bed methane well systems with the ultimate goal to stimulate methane production.


Subject(s)
Coal , Trace Elements , Coal/microbiology , Trace Elements/metabolism , Methane , RNA, Ribosomal, 16S/genetics , Phylogeny , Bacteria/genetics
3.
Glob Chang Biol ; 30(1): e17077, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273583

ABSTRACT

Deforestation of tropical rainforests is a major land use change that alters terrestrial biogeochemical cycling at local to global scales. Deforestation and subsequent reforestation are likely to impact soil phosphorus (P) cycling, which in P-limited ecosystems such as the Amazon basin has implications for long-term productivity. We used a 100-year replicated observational chronosequence of primary forest conversion to pasture, as well as a 13-year-old secondary forest, to test land use change and duration effects on soil P dynamics in the Amazon basin. By combining sequential extraction and P K-edge X-ray absorption near edge structure (XANES) spectroscopy with soil phosphatase activity assays, we assessed pools and process rates of P cycling in surface soils (0-10 cm depth). Deforestation caused increases in total P (135-398 mg kg-1 ), total organic P (Po ) (19-168 mg kg-1 ), and total inorganic P (Pi ) (30-113 mg kg-1 ) fractions in surface soils with pasture age, with concomitant increases in Pi fractions corroborated by sequential fractionation and XANES spectroscopy. Soil non-labile Po (10-148 mg kg-1 ) increased disproportionately compared to labile Po (from 4-5 to 7-13 mg kg-1 ). Soil phosphomonoesterase and phosphodiesterase binding affinity (Km ) decreased while the specificity constant (Ka ) increased by 83%-159% in 39-100y pastures. Soil P pools and process rates reverted to magnitudes similar to primary forests within 13 years of pasture abandonment. However, the relatively short but representative pre-abandonment pasture duration of our secondary forest may not have entailed significant deforestation effects on soil P cycling, highlighting the need to consider both pasture duration and reforestation age in evaluations of Amazon land use legacies. Although the space-for-time substitution design can entail variation in the initial soil P pools due to atmospheric P deposition, soil properties, and/or primary forest growth, the trend of P pools and process rates with pasture age still provides valuable insights.


Subject(s)
Rainforest , Soil , Soil/chemistry , Phosphorus , Ecosystem , Conservation of Natural Resources , Forests
4.
Microbiol Resour Announc ; 11(8): e0043222, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35852316

ABSTRACT

Here, we report the metagenomes from two Amazonian floodplain sediments in eastern Brazil. Tropical wetlands are well known for their role in the global carbon cycle. Microbial information on this diversified and dynamic landscape will provide further insights into its significance in regional and global biogeochemical cycles.

5.
Sci Total Environ ; 838(Pt 2): 156225, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35623507

ABSTRACT

Cattle ranching is the largest driver of deforestation in the Brazilian Amazon. The rainforest-to-pasture conversion affects the methane cycle in upland soils, changing it from sink to source of atmospheric methane. However, it remains unknown if management practices could reduce the impact of land-use on methane cycling. In this work, we evaluated how pasture management can regulate the soil methane cycle either by maintaining continuous grass coverage on pasture soils, or by liming the soil to amend acidity. Methane fluxes from forest and pasture soils were evaluated in moisture-controlled greenhouse experiments with and without grass cover (Urochloa brizantha cv. Marandu) or liming. We also assessed changes in the soil microbial community structure of both bare (bulk) and rhizospheric pasture soils through high throughput sequencing of the 16S rRNA gene, and quantified the methane cycling microbiota by their respective marker genes related to methane generation (mcrA) or oxidation (pmoA). The experiments used soils from eastern and western Amazonia, and concurrent field studies allowed us to confirm greenhouse data. The presence of a grass cover not only increased methane uptake by up to 35% in pasture soils, but also reduced the abundance of the methane-producing community. In the grass rhizosphere this reduction was up to 10-fold. Methane-producing archaea belonged to the genera Methanosarcina sp., Methanocella sp., Methanobacterium sp., and Rice Cluster I. Further, we showed that soil liming to increasing pH compromised the capacity of forest and pasture soils to be a sink for methane, and instead converted formerly methane-consuming forest soils to become methane sources in only 40-80 days. Liming reduced the relative abundance of Beijerinckiacea family in forest soils, which account for many known methanotrophs. Our results demonstrate that pasture management that maintains grass coverage can mitigate soil methane emissions, compared to bare (bulk) pasture soil.


Subject(s)
Archaea , Methane , Animals , Cattle , Poaceae/genetics , RNA, Ribosomal, 16S/genetics , Rhizosphere , Soil/chemistry , Soil Microbiology
6.
Environ Res ; 212(Pt A): 113139, 2022 09.
Article in English | MEDLINE | ID: mdl-35337832

ABSTRACT

Climatic changes are altering precipitation patterns in the Amazon and may influence soil methane (CH4) fluxes due to the differential responses of methanogenic and methanotrophic microorganisms. However, it remains unclear if these climate feedbacks can amplify land-use-related impacts on the CH4 cycle. To better predict the responses of soil CH4-cycling microorganisms and emissions under altered moisture levels in the Eastern Brazilian Amazon, we performed a 30-day microcosm experiment manipulating the moisture content (original moisture; 60%, 80%, and 100% of field capacity - FC) of forest and pasture soils. Gas samples were collected periodically for gas chromatography analysis, and methanogenic archaeal and methanotrophic bacterial communities were assessed using quantitative PCR and metagenomics. Positive and negative daily CH4 fluxes were observed for forest and pasture, indicating that these soils can act as both CH4 sources and sinks. Cumulative emissions and the abundance of methanogenesis-related genes and taxonomic groups were affected by land use, moisture, and their interaction. Pasture soils at 100% FC had the highest abundance of methanogens and CH4 emissions, 22 times higher than forest soils under the same treatment. Higher ratios of methanogens to methanotrophs were found in pasture than in forest soils, even at field capacity conditions. Land use and moisture were significant factors influencing the composition of methanogenic and methanotrophic communities. The diversity and evenness of methanogens did not change throughout the experiment. In contrast, methanotrophs exhibited the highest diversity and evenness in pasture soils at 100% FC. Taken together, our results suggest that increased moisture exacerbates soil CH4 emissions and microbial responses driven by land-use change in the Amazon. This is the first report on the microbial CH4 cycle in Amazonian upland soils that combined one-month gas measurements with advanced molecular methods.


Subject(s)
Methane , Soil , Climate , Forests , Methane/analysis , Soil/chemistry , Soil Microbiology
7.
Mol Ecol ; 30(19): 4899-4912, 2021 10.
Article in English | MEDLINE | ID: mdl-34297871

ABSTRACT

Southern Amazonia is currently experiencing extensive land use change from forests to agriculture caused by increased local and global demand for agricultural products. However, little is known about the impacts of deforestation and land use change on soil biota. We investigated two regions in southern Amazonia (rainforest and Savannah/Cerrado biomes), analysing soil biota community turnover based on 16S (Archaea and Bacteria) and 18S rRNA genes (Eukaryotes, including Fungi, Protists and Animalia) and correlating them with soil chemistry and land use intensity. We found that soil biota community structure is driven by land use change in both Cerrado and rainforest. Crop fields approximatively doubled the richness of soil Archaea, Bacteria and Protists. We propose that crop systems not only increase soil pH and fertility, but also create continued disturbance (crop seasons) that stimulates soil diversity, as predicted by the dynamic equilibrium model (DEM) and the intermediate disturbance hypothesis (IDH). Even though agricultural fields had higher soil biota richness, some taxa were suppressed by agriculture (6/31 operational taxonomic units of Archaea, 245/1790 of Bacteria, 12/74 of Animalia, 20/144 of Fungi and 25/310 of Protists). Consequently, land use change in this region should proceed with caution. In the southern Amazonia region of Brazil, current laws require farmers to keep 20%-80% pristine vegetation areas on their property. Our data support the relevance of this law: since there are unique soil taxa under native vegetation, keeping these pristine areas adjacent to the agricultural fields should maximize soil biodiversity protection in these regions.


Subject(s)
Soil Microbiology , Soil , Agriculture , Biodiversity , Biota , Brazil , Rainforest
8.
Appl Environ Microbiol ; 87(17): e0089521, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34161142

ABSTRACT

Grasslands represent a critical ecosystem important for global food production, soil carbon storage, and water regulation. Current intensification and expansion practices add to the degradation of grasslands and dramatically increase greenhouse gas emissions and pollution. Thus, new ways to sustain and improve their productivity are needed. Research efforts focus on the plant-leaf microbiome, or phyllosphere, because its microbial members impact ecosystem function by influencing pathogen resistance, plant hormone production, and nutrient availability through processes including nitrogen fixation. However, little is known about grassland phyllospheres and their response to environmental stress. In this study, globally dominant temperate and tropical forage grass species were grown in a greenhouse under current climate conditions and drought conditions that mimic future climate predictions to understand if (i) plant host taxa influence microbial community assembly, (ii) microbial communities respond to drought stress, and (iii) phyllosphere community changes correlate to changes in plant host traits and stress-response strategies. Community analysis using high-resolution sequencing revealed Gammaproteobacteria as the dominant bacterial class, which increased under severe drought stress on both temperate and tropical grasses while overall bacterial community diversity declined. Bacterial community diversity, structure, and response to drought were significantly different between grass species. This community dependence on plant host species correlated with differences in grass species traits, which became more defined under drought stress conditions, suggesting symbiotic evolutionary relationships between plant hosts and their associated microbial community. Further understanding these strategies and the functions microbes provide to plants will help us utilize microbes to promote agricultural and ecosystem productivity in the future. IMPORTANCE Globally important grassland ecosystems are at risk of degradation due to poor management practices compounded by predicted increases in severity and duration of drought over the next century. Finding new ways to support grassland productivity is critical to maintaining their ecological and agricultural benefits. Discerning how grassland microbial communities change in response to climate stress will help us understand how plant-microbe relationships may be useful to sustainably support grasslands in the future. In this study, phyllosphere community diversity and composition were significantly altered under drought conditions. The significance of our research is demonstrating how severe climate stress reduces bacterial community diversity, which previously was directly associated with decreased plant productivity. These findings guide future questions about functional plant-microbe interactions under stress conditions, greatly enhancing our understanding of how bacteria can increase food security by promoting grassland growth and resilience.


Subject(s)
Bacteria/isolation & purification , Microbiota , Poaceae/microbiology , Water/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Droughts , Ecosystem , Grassland , Poaceae/classification , Poaceae/growth & development , Poaceae/metabolism , Soil/chemistry , Soil Microbiology , Water/analysis
9.
Mol Ecol ; 30(11): 2560-2572, 2021 06.
Article in English | MEDLINE | ID: mdl-33817881

ABSTRACT

The Amazonian floodplain forests are dynamic ecosystems of great importance for the regional hydrological and biogeochemical cycles and function as a significant CH4 source contributing to the global carbon balance. Unique geochemical factors may drive the microbial community composition and, consequently, affect CH4 emissions across floodplain areas. Here, we report the in situ composition of CH4 cycling microbial communities in Amazonian floodplain sediments. We considered how abiotic factors may affect the microbial community composition and, more specifically, CH4 cycling groups. We collected sediment samples during wet and dry seasons from three different types of floodplain forests, along with upland forest soil samples, from the Eastern Amazon, Brazil. We used high-resolution sequencing of archaeal and bacterial 16S rRNA genes combined with real-time PCR to quantify Archaea and Bacteria, as well as key functional genes indicative of the presence of methanogenic (mcrA) and methanotrophic (pmoA) microorganisms. Methanogens were found to be present in high abundance in floodplain sediments, and they seem to resist the dramatic environmental changes between flooded and nonflooded conditions. Methanotrophs known to use different pathways to oxidise CH4 were detected, including anaerobic archaeal and bacterial taxa, indicating that a wide metabolic diversity may be harboured in this highly variable environment. The floodplain environmental variability, which is affected by the river origin, drives not only the sediment chemistry but also the composition of the microbial communities. These environmental changes seem also to affect the pools of methanotrophs occupying distinct niches. Understanding these shifts in the methanotrophic communities could improve our comprehension of the CH4 emissions in the region.


Subject(s)
Euryarchaeota , Methane , Archaea/genetics , Brazil , RNA, Ribosomal, 16S/genetics , Soil Microbiology
10.
ISME J ; 15(3): 658-672, 2021 03.
Article in English | MEDLINE | ID: mdl-33082572

ABSTRACT

The Amazon rainforest is a biodiversity hotspot and large terrestrial carbon sink threatened by agricultural conversion. Rainforest-to-pasture conversion stimulates the release of methane, a potent greenhouse gas. The biotic methane cycle is driven by microorganisms; therefore, this study focused on active methane-cycling microorganisms and their functions across land-use types. We collected intact soil cores from three land use types (primary rainforest, pasture, and secondary rainforest) of two geographically distinct areas of the Brazilian Amazon (Santarém, Pará and Ariquemes, Rondônia) and performed DNA stable-isotope probing coupled with metagenomics to identify the active methanotrophs and methanogens. At both locations, we observed a significant change in the composition of the isotope-labeled methane-cycling microbial community across land use types, specifically an increase in the abundance and diversity of active methanogens in pastures. We conclude that a significant increase in the abundance and activity of methanogens in pasture soils could drive increased soil methane emissions. Furthermore, we found that secondary rainforests had decreased methanogenic activity similar to primary rainforests, and thus a potential to recover as methane sinks, making it conceivable for forest restoration to offset greenhouse gas emissions in the tropics. These findings are critical for informing land management practices and global tropical rainforest conservation.


Subject(s)
Rainforest , Soil , Brazil , Methane , Soil Microbiology
11.
Environ Int ; 145: 106131, 2020 12.
Article in English | MEDLINE | ID: mdl-32979812

ABSTRACT

Amazonian rainforest is undergoing increasing rates of deforestation, driven primarily by cattle pasture expansion. Forest-to-pasture conversion has been associated with increases in soil methane (CH4) emission. To better understand the drivers of this change, we measured soil CH4 flux, environmental conditions, and belowground microbial community structure across primary forests, cattle pastures, and secondary forests in two Amazonian regions. We show that pasture soils emit high levels of CH4 (mean: 3454.6 ± 9482.3 µg CH4 m-2 d-1), consistent with previous reports, while forest soils on average emit CH4 at modest rates (mean: 9.8 ± 120.5 µg CH4 m-2 d-1), but often act as CH4 sinks. We report that secondary forest soils tend to consume CH4 (mean: -10.2 ± 35.7 µg CH4 m-2 d-1), demonstrating that pasture CH4 emissions can be reversed. We apply a novel computational approach to identify microbial community attributes associated with flux independent of soil chemistry. While this revealed taxa known to produce or consume CH4 directly (i.e. methanogens and methanotrophs, respectively), the vast majority of identified taxa are not known to cycle CH4. Each land use type had a unique subset of taxa associated with CH4 flux, suggesting that land use change alters CH4 cycling through shifts in microbial community composition. Taken together, we show that microbial composition is crucial for understanding the observed CH4 dynamics and that microorganisms provide explanatory power that cannot be captured by environmental variables.


Subject(s)
Methane , Soil , Animals , Brazil , Cattle , Forests , Soil Microbiology
12.
Appl Environ Microbiol ; 86(10)2020 05 05.
Article in English | MEDLINE | ID: mdl-32169937

ABSTRACT

Biological nitrogen fixation can be an important source of nitrogen in tropical forests that serve as a major CO2 sink. Extensive deforestation of the Amazon is known to influence microbial communities and the biogeochemical cycles they mediate. However, it is unknown how diazotrophs (nitrogen-fixing microorganisms) respond to deforestation and subsequent ecosystem conversion to agriculture, as well as whether they can recover in secondary forests that are established after agriculture is abandoned. To address these knowledge gaps, we combined a spatially explicit sampling approach with high-throughput sequencing of nifH genes. The main objectives were to assess the functional distance decay relationship of the diazotrophic bacterial community in a tropical forest ecosystem and to quantify the roles of various factors that drive the observed changes in the diazotrophic community structure. We observed an increase in local diazotrophic diversity (α-diversity) with a decrease in community turnover (ß-diversity), associated with a shift in diazotrophic community structure as a result of the forest-to-pasture conversion. Both diazotrophic community turnover and structure showed signs of recovery in secondary forests. Changes in the diazotrophic community were primarily driven by the change in land use rather than differences in geochemical characteristics or geographic distances. The diazotroph communities in secondary forests resembled those in primary forests, suggesting that at least partial recovery of diazotrophs is possible following agricultural abandonment.IMPORTANCE The Amazon region is a major tropical forest region that is being deforested at an alarming rate to create space for cattle ranching and agriculture. Diazotrophs (nitrogen-fixing microorganisms) play an important role in supplying soil N for plant growth in tropical forests. It is unknown how diazotrophs respond to deforestation and whether they can recover in secondary forests that establish after agriculture is abandoned. Using high-throughput sequencing of nifH genes, we characterized the response of diazotrophs' ß-diversity and identified major drivers of changes in diazotrophs from forest-to-pasture and pasture-to-secondary-forest conversions. Studying the impact of land use change on diazotrophs is important for a better understanding of the impact of deforestation on tropical forest ecosystem functioning, and our results on the potential recovery of diazotrophs in secondary forests imply the possible restoration of ecosystem functions in secondary forests.


Subject(s)
Bacteria/metabolism , Conservation of Natural Resources , Rainforest , Soil Microbiology , Bacteria/classification , Brazil , Microbiota , Nitrogen Fixation , Soil/chemistry
13.
FEMS Microbiol Ecol ; 95(2)2019 02 01.
Article in English | MEDLINE | ID: mdl-30481288

ABSTRACT

Co-occurrence networks allow for the identification of potential associations among species, which may be important for understanding community assembly and ecosystem functions. We employed this strategy to examine prokaryotic co-occurrence patterns in the Amazon soils and the response of these patterns to land use change to pasture, with the hypothesis that altered microbial composition due to deforestation will mirror the co-occurrence patterns across prokaryotic taxa. In this study, we calculated Spearman correlations between operational taxonomic units (OTUs) as determined by 16S rRNA gene sequencing, and only robust correlations were considered for network construction (-0.80 ≥ P ≥ 0.80, adjusted P < 0.01). The constructed network represents distinct forest and pasture components, with altered compositional and topological features. A comparative analysis between two representative modules of these contrasting ecosystems revealed novel information regarding changes to metabolic pathways related to nitrogen cycling. Our results showed that soil physicochemical properties such as temperature, C/N and H++Al3+ had a significant impact on prokaryotic communities, with alterations to network topologies. Taken together, changes in co-occurrence patterns and physicochemical properties may contribute to ecosystem processes including nitrification and denitrification, two important biogeochemical processes occurring in tropical forest systems.


Subject(s)
Bacteria/isolation & purification , Conservation of Natural Resources , Microbiota/physiology , Soil Microbiology , Soil/chemistry , Bacteria/classification , Bacteria/genetics , Denitrification , Forests , Microbiota/genetics , Nitrification , Nitrogen Cycle , RNA, Ribosomal, 16S/genetics
14.
Front Microbiol ; 9: 1635, 2018.
Article in English | MEDLINE | ID: mdl-30083144

ABSTRACT

Deforestation in the Brazilian Amazon occurs at an alarming rate, which has broad effects on global greenhouse gas emissions, carbon storage, and biogeochemical cycles. In this study, soil metagenomes and metagenome-assembled genomes (MAGs) were analyzed for alterations to microbial community composition, functional groups, and putative physiology as it related to land-use change and tropical soil. A total of 28 MAGs were assembled encompassing 10 phyla, including both dominant and rare biosphere lineages. Amazon Acidobacteria subdivision 3, Melainabacteria, Microgenomates, and Parcubacteria were found exclusively in pasture soil samples, while Candidatus Rokubacteria was predominant in the adjacent rainforest soil. These shifts in relative abundance between land-use types were supported by the different putative physiologies and life strategies employed by the taxa. This research provides unique biological insights into candidate phyla in tropical soil and how deforestation may impact the carbon cycle and affect climate change.

15.
Mol Ecol ; 26(6): 1547-1556, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28100018

ABSTRACT

Land use change is one of the greatest environmental impacts worldwide, especially to tropical forests. The Amazon rainforest has been subject to particularly high rates of land use change, primarily to cattle pasture. A commonly observed response to cattle pasture establishment in the Amazon is the conversion of soil from a methane sink in rainforest, to a methane source in pasture. However, it is not known how the microorganisms that mediate methane flux are altered by land use change. Here, we use the deepest metagenomic sequencing of Amazonian soil to date to investigate differences in methane-cycling microorganisms and their traits across rainforest and cattle pasture soils. We found that methane-cycling microorganisms responded to land use change, with the strongest responses exhibited by methane-consuming, rather than methane-producing, microorganisms. These responses included a reduction in the relative abundance of methanotrophs and a significant decrease in the abundance of genes encoding particulate methane monooxygenase. We also observed compositional changes to methanotroph and methanogen communities as well as changes to methanotroph life history strategies. Our observations suggest that methane-cycling microorganisms are vulnerable to land use change, and this vulnerability may underlie the response of methane flux to land use change in Amazon soils.


Subject(s)
Agriculture , Methane/metabolism , Rainforest , Soil Microbiology , Animals , Bacteria , Cattle , Soil
17.
Front Microbiol ; 6: 1057, 2015.
Article in English | MEDLINE | ID: mdl-26500618

ABSTRACT

Ecological processes regulating soil carbon (C) and nitrogen (N) cycles are still poorly understood, especially in the world's largest agricultural frontier in Southern Amazonia. We analyzed soil parameters in samples from pristine rainforest and after land use change to pasture and crop fields, and correlated them with abundance of functional and phylogenetic marker genes (amoA, nirK, nirS, norB, nosZ, nifH, mcrA, pmoA, and 16S/18S rRNA). Additionally, we integrated these parameters using path analysis and multiple regressions. Following forest removal, concentrations of soil C and N declined, and pH and nutrient levels increased, which influenced microbial abundances and biogeochemical processes. A seasonal trend was observed, suggesting that abundances of microbial groups were restored to near native levels after the dry winter fallow. Integration of the marker gene abundances with soil parameters using path analysis and multiple regressions provided good predictions of biogeochemical processes, such as the fluxes of NO3, N2O, CO2, and CH4. In the wet season, agricultural soil showed the highest abundance of nitrifiers (amoA) and Archaea, however, forest soils showed the highest abundances of denitrifiers (nirK, nosZ) and high N, which correlated with increased N2O emissions. Methanogens (mcrA) and methanotrophs (pmoA) were more abundant in forest soil, but methane flux was highest in pasture sites, which was related to soil compaction. Rather than analyzing direct correlations, the data integration using multivariate tools provided a better overview of biogeochemical processes. Overall, in the wet season, land use change from forest to agriculture reduced the abundance of different functional microbial groups related to the soil C and N cycles; integrating the gene abundance data and soil parameters provided a comprehensive overview of these interactions. Path analysis and multiple regressions addressed the need for more comprehensive approaches to improve our mechanistic understanding of biogeochemical cycles.

18.
Front Microbiol ; 6: 779, 2015.
Article in English | MEDLINE | ID: mdl-26284056

ABSTRACT

The Amazon rainforest is well known for its rich plant and animal diversity, but its bacterial diversity is virtually unexplored. Due to ongoing and widespread deforestation followed by conversion to agriculture, there is an urgent need to quantify the soil biological diversity within this tropical ecosystem. Given the abundance of the phylum Verrucomicrobia in soils, we targeted this group to examine its response to forest-to-pasture conversion. Both taxonomic and phylogenetic diversities were higher for pasture in comparison to primary and secondary forests. The community composition of Verrucomicrobia in pasture soils was significantly different from those of forests, with a 11.6% increase in the number of sequences belonging to subphylum 3 and a proportional decrease in sequences belonging to the class Spartobacteria. Based on 99% operational taxonomic unit identity, 40% of the sequences have not been detected in previous studies, underscoring the limited knowledge regarding the diversity of microorganisms in tropical ecosystems. The abundance of Verrucomicrobia, measured with quantitative PCR, was strongly correlated with soil C content (r = 0.80, P = 0.0016), indicating their importance in metabolizing plant-derived carbon compounds in soils.

19.
ACS Appl Mater Interfaces ; 7(19): 10275-82, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25955769

ABSTRACT

Active surfaces that form the basis for bacterial sensors for threat detection, food safety, or certain diagnostic applications rely on bacterial adhesion. However, bacteria capture from complex fluids on the active surfaces can be reduced by the competing adsorption of proteins and other large molecules. Such adsorption can also interfere with device performance. As a result, multiple upstream processing steps are frequently employed to separate macromolecules from any cells, which remain in the buffer. Here, we present an economical approach to capture bacteria, without competitive adsorption by proteins, on engineered surfaces that do not employ biomolecular recognition, antibodies, or other molecules with engineered sequences. The surfaces are based on polyethylene glycol (PEG) brushes that, on their own, repel both proteins and bacteria. These PEG brushes backfill the surface around sparsely adsorbed cationic polymer coils (here, poly-L-lysine (PLL)). The PLL coils are effectively embedded within the brush and produce locally cationic nanoscale regions that attract negatively charged regions of proteins or cells against the steric background repulsion from the PEG brush. By carefully designing the surfaces to include just enough PLL to capture bacteria, but not enough to capture proteins, we achieve sharp selectivity where S. aureus is captured from albumin- or fibrinogen-containing solutions, but free albumin or fibrinogen molecules are rejected from the surface. Bacterial adhesion on these surfaces is not reduced by competitive protein adsorption, in contrast to performance of more uniformly cationic surfaces. Also, protein adsorption to the bacteria does not interfere with capture, at least for the case of S. aureus, to which fibrinogen binds through a specific receptor.


Subject(s)
Bacterial Adhesion/physiology , Biosensing Techniques/methods , Cell Separation/methods , Polyethylene Glycols/chemistry , Proteins/chemistry , Staphylococcus aureus/isolation & purification , Biocompatible Materials/chemical synthesis , Flow Cytometry/methods , Materials Testing , Polylysine/chemistry , Solutions , Staphylococcus aureus/cytology , Staphylococcus aureus/physiology
20.
Front Microbiol ; 6: 1443, 2015.
Article in English | MEDLINE | ID: mdl-26733981

ABSTRACT

Members of the phylum Acidobacteria are among the most abundant soil bacteria on Earth, but little is known about their response to environmental changes. We asked how the relative abundance and biogeographic patterning of this phylum and its subgroups responded to forest-to-pasture conversion in soils of the western Brazilian Amazon. Pyrosequencing of 16S rRNA genes was employed to assess the abundance and composition of the Acidobacteria community across 54 soil samples taken using a spatially nested sampling scheme at the landscape level. Numerically, Acidobacteria represented 20% of the total bacterial community in forest soils and 11% in pasture soils. Overall, 15 different Acidobacteria subgroups of the current 26 subgroups were detected, with Acidobacteria subgroups 1, 3, 5, and 6 accounting together for 87% of the total Acidobacteria community in forest soils and 75% in pasture soils. Concomitant with changes in soil chemistry after forest-to-pasture conversion-particularly an increase in properties linked to soil acidity and nutrient availability-we observed an increase in the relative abundances of Acidobacteria subgroups 4, 10, 17, and 18, and a decrease in the relative abundances of other Acidobacteria subgroups in pasture relative to forest soils. The composition of the total Acidobacteria community as well as the most abundant Acidobacteria subgroups (1, 3, 5, and 6) was significantly more similar in composition across space in pasture soils than in forest soils. These results suggest that preponderant responses of Acidobacteria subgroups, especially subgroups 1, 3, 4, 5, and 6, to forest-to-pasture conversion effects in soils could be used to define management-indicators of agricultural practices in the Amazon Basin. These acidobacterial responses are at least in part through alterations on acidity- and nutrient-related properties of the Amazon soils.

SELECTION OF CITATIONS
SEARCH DETAIL
...